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Fig. 1. Deforming the original pant-shape polygon using linear (top row) and high-order (bo�om row) cage-based deformation, respectively. Top row from
le� to right: the results obtained using linear cages of di�erent resolutions, containing 8, 24, and 72 vertices, respectively. Bo�om row from le� to right: the
results obtained using the same cubic cage with di�erent methods, including cubic MVC [Li et al. 2013], selective degree elevation of the S-patch [Smith and
Schaefer 2015], and the�0 Generalized Coons patch. Harmonic coordinates [Joshi et al. 2007] were used for the linear cage-based deformation and the patch
evaluation (both the S-patch and the�0 Generalized Coons patch).

Space deformations deform the ambient space and thus implicitly deform the
embedded objects. Free-Form Deformation allows high-order deformation to
the embedding space, yet the lattice may fail to conform to the object and in-
volves many internal control points. Cage-based Deformation utilizes a cage
space that conforms to the object, obviating the need for additional internal
control points, but it is typically linear at edges. In this paper, we propose
a simple and general method with both advantages while avoiding their
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drawbacks, allowing users to implement high-order cage-based deformation.
To achieve this goal, we introduce a new parametric trans�nite interpolation
scheme based on generalized barycentric coordinates, which uni�es and
generalizes the rectangular and triangular Coons patch. This�0 Generalized
Coons patch can be de�ned not only over 2D domains but also 3D domains or
even higher-dimensional domains, with arbitrary polytopes, even including
non-manifold topologies. Moreover, the�0 Generalized Coons patch has an
elegant mathematical expression.
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surface models; Volumetric models; Shape analysis.

Additional Key Words and Phrases: Cage-based deformation, free-form
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Table 1. Comparison with existing high-order cage-based deformation methods.

2D Case
Higher

Dimensional
Cases

Non-manifold
Topologies Cage Type

Cubic MVC
[Li et al. 2013] � � � Only Cubic curves

Polynomial Green coordinates 1

[Michel and Thiery 2023] � � � Only Bézier curves

Selective Degree Elevation
[Smith and Schaefer 2015] � � � Only Bézier curves

�0 GC patches � � � Arbitrary Free-Form curves

1 Polynomial Green coordinates are entirely distinct from other methods in that they lack the interpolation property but have the conformality property.

(a) (b) (c)

Fig. 2. Image deformation using di�erent methods. (a) Free-Form Deforma-
tion. (b) Cage-based Deformation. (c) High-order Cage-based Deformation.
Top row: the original object with initial la�ice/cage. Bo�om row: the defor-
mation results.

1 INTRODUCTION
Deformation, an important technique in computer graphics, widely
used for geometric modeling and character animation, involves
transforming or mapping the position of each point in the original
object to the corresponding position in the deformed object [Botsch
et al. 2006]. Free-Form Deformation (FFD) [Sederberg and Parry
1986] is a user-friendly technique for deforming geometric models
by warping the whole embedding space. The embedding space is
usually a parallelepiped represented as a polynomial tensor-product
Bézier/B-spline volume with a regular control lattice. However, for
complex models, the parallelepiped embedding space may not �t
them well, which could result in alias artifacts in the deformed mod-
els [Botsch et al. 2010]. Besides, the lattices usually include internal
control points that are challenging and frustrating to articulate.
Cage-based Deformation (CBD) [Ju et al. 2005] is a generalization of
the lattice-based FFD. Unlike FFD, CBD uses a coarse control mesh
that better conforms to the undeformed object. The embedding poly-
hedral space is represented using generalized barycentric coordinates
(GBC) [Floater 2015]. Although generalized barycentric interpola-
tion avoids the tedious internal control points, it remains linear

(non-smooth) at the boundaries. This results in two issues: �rstly,
when users need additional degrees of freedom, cage re�nement
[Hormann and Floater 2006] is necessary, which requires recalcu-
lating the cage coordinates; secondly, cage re�nement maintains
piecewise linear functions on the boundary [Schaefer 2017; Smith
and Schaefer 2015]. This work will combine the advantages of both
methods while avoiding their drawbacks, allowing users to achieve
high-order cage-based deformation. (see Fig. 2).
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Fig. 3. 2D deformation. FFD process: (a)⇒(b)⇒(d). Degree elevated CBD
process: (a)⇒(c)⇒(b)⇒(d).

A generalized barycentric view of FFD
Here, we present the potential connection between FFD and CBD,
which seems to have �rst appeared in [Langer et al. 2008], then was
revealed by [Smith and Schaefer 2015], and later by [Schaefer 2017].
For simplicity, let us consider the 2D case. Fig. 3 illustrates the

process of 2D deformation. The undeformed object was initially
enclosed within a rectangle Ω = {(�,�) | � ∈ [�1, �2], � ∈ [�1, �2]}.
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For any point (�,�) inside the rectangle, we calculate its local coordi-
nates (�, �) and the regular control lattice {b�, � }�1,�2�, �=0,0 (see Fig. 3(a)-
(b)).

(�, �) =
(
� − �1
�2 − �1

,
� − �1
�2 − �1

)
, (1)

b�, � = (�1, �1) +
(
�

�1
(�2 − �1), �

�2
(�2 − �1)

)
. (2)

Thus, the embedding space Ω is represented as

(�,�) = S(�, �) =
�1∑
�=0

�2∑
�=0

��1� (�)��2� (�) · b�, � , (3)

where ��
�
(�) = �!

(�−� )!�! (1 − �)�−��� is the �-th Bernstein basis
function of degree � . By moving the control points {b�, � }�1,�2�, �=0,0, the
embedding surface S(�, �) is deformed, thereby deforming the object
as well (see Fig. 3(d)).

Indeed, the 2D FFD process described above could be divided into
the following two steps.
I. Generalized barycentric interpolation. Let {v� }4�=1 be the ver-
tices of rectangle Ω, then any point (�,�) inside the rectangle is
expressed as

(�,�) =
4∑

�=1
�� · v� , (4)

where
�1 = (1 − �) (1 − �),
�2 = � (1 − �),
�3 = ��,

�4 = (1 − �)�,

(5)

are the inverse bilinear coordinates [Floater 2015] with respect
to {v� }4�=1 (see Fig. 3(c)).

II. Degree elevation. The above generalized barycentric interpolation
is exactly a bi-1 tensor-product Bézier surface. Then applying
the degree elevation formula of Bézier surfaces to Equation (4)
will reproduce Equation (3) (see Fig. 3(b)).

From this perspective, the 2D FFD could be interpreted as a degree-
elevated 4-sided CBD [Schaefer 2017].

Fig. 4. Degree elevation of a 5-sided S-patch. Le�: the linear 5-sided Bézier
grid has 5 control points, including 0 internal control point. Middle: the
quadratic 5-sided Bézier grid has 15 control points, including 5 internal
control points. Right: the cubic 5-sided Bézier grid has 35 control points,
including 20 internal control points.

Fig. 5. Control point-based (top) vs. Transfinite interpolation (bo�om). By
moving the internal control points, we can edit the interior of the control
point-based surface without changing the boundaries, which is impossible
with the transfinite interpolation surface.

Motivation
The degree elevation can be applied to a polygonal cage to increase
its degrees of freedom, which leads to the well-known S-patch [Loop
and DeRose 1989]. Although the S-patch has a very elegant math-
ematical form, it has many internal control points and a complex
control mesh structure (see Fig. 4). Since the cage already conforms
to the object, we do not need internal control points. Just as Schaefer
wrote [Schaefer 2017], “Moreover, the majority of those control points
exist in the interior of the cage, which would make it di�cult for a user
to manipulate those points. Hence, higher degree cage-based deforma-
tions are not practical from a user-interface perspective.” Therefore,
directly using S-patch for high-order CBD is not a suitable choice.

In the �eld of Computer Aided Geometric Design (CAGD), there
exists another method di�erent from control-point-based schemes
like the Bézier approach, known as trans�nite interpolation, such as
the Coons patch [Coons 1967]. A signi�cant drawback of trans�nite
interpolation is the lack of internal control (see Fig. 5). Here, we
quote [Várady et al. 2016], “The trans�nite approach is helpful when
we are satis�ed with the shape by the automatic settings, however,
di�culties may arise if the shape needs to be further modi�ed or opti-
mized in the interior.” Over the past decade, the CAGD community
has been dedicated to adding internal controls to multi-sided para-
metric trans�nite interpolation surfaces [Salvi 2024; Várady et al.
2012; Várady et al. 2016].

The lack of internal control in trans�nite interpolation schemes is
required for CBD. Thus, parametric trans�nite interpolation would
be a perfect choice for high-order CBD. To apply to CBD, para-
metric trans�nite interpolation surfaces must meet the following
requirements.

• Arbitrary topology. As previously stated, cages depend on the
model’s shape and the user’s speci�cations, generally without
topological constraints. Therefore, the parametric trans�nite
interpolation scheme used for CBD must be able to represent
surfaces of arbitrary topology.

• Linear reproduction. This implies that the parametric trans�-
nite interpolation surface on the original cage space (linear
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cage) needs to be an identity transformation. Thus, the param-
eterization issue of the original cage space, which is undoubt-
edly very challenging if the linear reproduction property is
not present, can be avoided.

However, existing parametric trans�nite interpolation surfaces
(cf. Section 2.4) cannot meet the above requirements simultaneously.
Almost all patches were developed to address the hole-�lling issue in
surface modeling, for which the continuity between surfaces is cru-
cial. Therefore, trans�nite interpolation surfaces must account for
the interpolation of cross-boundary derivatives and corner twists.
The constraints of high-order interpolationmake it di�cult for trans-
�nite interpolation schemes to meet the above two requirements.
However, for CBD, there is no need to consider smooth joining be-
tween adjacent patches, so �0 interpolation is su�cient. Recalling
S-patches, they can meet the two requirements because they use
GBCs as parameters [Schaefer 2017]. The original S-patches [Loop
and DeRose 1989] were only de�ned over convex polygons because
they used Wachspress coordinates [Wachspress 1975]. However, us-
ing more general barycentric coordinates [Langer et al. 2008; Smith
and Schaefer 2015] could lift the topological restrictions. Linear
S-patches essentially reproduce generalized barycentric interpola-
tion (so we named it generalized barycentric reproduction), and
GBCs satisfy the property of linear reproduction. Therefore, similar
to S-patches, it is possible for multi-sided parametric trans�nite
interpolation surfaces to indirectly meet the linear reproduction
property (i.e., satisfy generalized barycentric reproduction) by using
GBC-based parameterization.

Contributions
In this paper, we �rst introduced a new multi-sided parametric
trans�nite interpolation scheme based on GBC-based parameteri-
zation [Várady et al. 2024], called the �0 Generalized Coons (GC)
patch, which is a natural generalization of the original Coons patch
[Coons 1967] and also the triangular Coons patch [Barnhill 1977;
Marshall 1975; Nielson 1979] and could be regarded as a general
�0 case of the Charrot–Gregory patch [Charrot and Gregory 1984]
and the ribbon-based �1 GC patch [Salvi et al. 2014]. The �0 GC
patch has an elegant expression. It de�nes over 2D domains and
3D domains or even higher-dimensional domains with arbitrary
polytopes, including non-manifold topologies, as long as the used
GBCs are well-de�ned. More importantly, it satis�es the property of
generalized barycentric reproduction. Then, we apply the proposed
�0 GC patches to higher-order cage-based deformation. It allows
for smooth deformation from straight segments to arbitrary free-
form curves by introducing additional control points. This results
in improved performance in scenarios such as bending or twisting.

Outline
The remainder of this paper is organized as follows. A brief re-
view of related work is presented in Section 2. Then we de�ne the
generalized Coons patch in Section 3 and propose the high-order
deformation method in Section 4. Some examples are shown in
Section 5. We discuss the limitations in Section 6 and conclude this
paper in Section 7.

2 RELATED WORK

2.1 Free-Form Deformation
Sederberg and Parry �rst introduced the FFD technique [Seder-
berg and Parry 1986] and originally utilized tensor-product Bézier
volumes. Subsequently, various extended FFD techniques were pro-
posed, incorporating B-spline [Griessmair and Purgathofer 1989]
and NURBS [Lamousin and Waggenspack Jr. 1994]. Recently, THP-
spline [Reis and Kosinka 2018] and T-spline [Zhang et al. 2020]
methods have also been applied to FFD. The EFFD method [Co-
quillart 1990] was proposed to remove the restriction of parallel
structure on control lattices, enabling support for more general
shapes. However, using non-parallel control lattices may lead to
di�culty parameterizing the deformation space, requiring solving
complex nonlinear systems. Catmull–Clark volumetric subdivision
[MacCracken and Joy 1996] is introduced into the FFD framework
to support control lattices with arbitrary topologies. Nonetheless,
the subdivision-based FFD also faces the parameterization issue of
the deformation space and is computationally costly and memory-
intensive.

2.2 Cage-based Deformation
CBD was initially introduced by [Ju et al. 2005], where the em-
bedding space is a polyhedron with arbitrary topology (i.e., the
cage), which conforms well to the object and is represented using
generalized barycentric coordinates. Since generalized barycentric
coordinates [Floater 2015] possess linear reproduction property, the
generalized barycentric interpolation is an identity mapping on the
initial cage space, avoiding reparameterization. Recently, [Ströter
et al. 2024] have presented a good survey on CBD. In the past two
decades, research on CBD has primarily focused on the construction
of various generalized barycentric coordinates, such as man value
coordinates (MVC) [Floater et al. 2005; Ju et al. 2005], harmonic
coordinates (HC) [Joshi et al. 2007], Green coordinates [Lipman
et al. 2008], local barycentric coordinates [Zhang et al. 2014], and
others [Budninskiy et al. 2016; Chang et al. 2023; Deng et al. 2020;
Dodik et al. 2023; Thiery et al. 2018].

2.3 Deformation using high-order cages
[Li et al. 2013] �rst introduced the concept of curved cages and
proposed the cubic MVC, an extension of MVC. The cubic MVCs
allow users to deform a linear cage into a curved cage with cubic
boundaries. However, they inherit the drawback of MVC being
negative over concave polygons, leading to artifacts in deformations
(see Fig. 1). Recently, [Michel and Thiery 2023] proposed polynomial
Green Coordinates, an extension of Green coordinates, allowing
deformations from linear edges to polynomial edges. Nevertheless,
both coordinates are de�ned only in 2D.

The selective degree elevation algorithm for S-patches proposed
by [Smith and Schaefer 2015] is most relevant to our method. They
introduced an indirect selective degree elevation method by elimi-
nating the weight de�ciency of the basis functions to avoid inserting
more control points than desired. Their method can transform lin-
ear boundaries into Bézier curve boundaries. However, deforming
solely using these selectively inserted control points may result in
artifacts (see Fig. 1 and 15). Furthermore, their method cannot be
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applied to non-manifold topologies. Table 1 presents a comparison
between di�erent approaches.

2.4 Polygonal parametric transfinite interpolation surfaces
Trans�nite interpolation surfaces originated from the Coons patch
[Coons 1967] formulated in the 1960s, which stands as one of the
earliest parametric surfacemodelingmethods in CAGD. The original
Coons patch only interpolates the given four boundary curves (�0),
later extended to �1 [Gregory 1974] and triangular [Barnhill 1977;
Marshall 1975; Nielson 1979] interpolation.
Subsequently, trans�nite surface interpolation was extended to

multi-sided patches. [Charrot and Gregory 1984] �rst utilized a reg-
ular pentagon as the parametric domain to construct a pentagonal
�1 interpolation surface, i.e., the Charrot–Gregory patch, which
was later extended to �-sided [Gregory 1986] and �2 interpolation
[Gregory and Hahn 1989]. This construction �rst de�nes � corner-
subpatches, which are quad-patches then blended together using
blending functions. This subpatch-based construction (also known
as ribbon-based construction [Várady et al. 2024]) has in�uenced
nearly all subsequent multi-sided trans�nite interpolation surfaces,
such as Kato’s patch [Kato 1991],�1 GC patch and composite ribbon
patch [Salvi et al. 2014], and others [Qin et al. 2023; Salvi et al. 2023;
Várady et al. 2012; Várady et al. 2011]. Although these methods
achieve high-order interpolation, they do not meet the two previ-
ously mentioned requirements, making them unsuitable for space
deformation.
Recently, Salvi [Salvi 2020] introduced a multi-sided general-

ization of the �0 Coons patch. Although their work is quite simi-
lar to ours, both achieving �0 interpolation and using GBC-based
parameterization, their method continues to rely on subpatch or
ribbon-based constructions [Salvi et al. 2014]. It does not satisfy
the generalized barycentric reproduction property. In contrast, our
method does not require constructing subpatches but instead di-
rectly combines the boundary curves and satis�es the property of
generalized barycentric reproduction (see Fig. 6).

�0 GC patch Salvi’s patch Di�erence

Fig. 6. Comparisonwith Salvi’s [Salvi 2020] patch.When the input boundary
configuration matches the domain polygon, the�0 GC patch can reproduce
the parameter space, whereas Salvi’s method cannot. Here, we used 2-norm
to measure the di�erence between our and Salvi’s patches.
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Fig. 7. Surface-based Boolean sum construction of a Coons patch.

3 A GENERALIZATION OF COONS PATCH

3.1 The original �0 Coons patch
Given 4 boundary curves {Cu0 (�),Cu1 (�),C0v (�),C1v (�) | � ∈
[0, 1]}, they form a loop, that is

Cu0 (0) = C0v (0) = p1,
Cu0 (1) = C1v (0) = p2,
Cu1 (1) = C1v (1) = p3,
Cu1 (0) = C0v (1) = p4 .

Then the Coons patch (see Fig. 7) which interpolates the 4 boundary
curves is

S����� (�, �) = Su + Sv − Suv, (6)
where

Su = (1 − �) · Cu0 (�) + � · Cu1 (�),
Sv = (1 − �) · C0v (�) + � · C1v (�),

Suv = (1 − �) (1 − �) · p1 + � (1 − �) · p2
+ �� · p3 + (1 − �)� · p4,

(7)

and (�, �) ∈ [0, 1]2.8 •
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Fig. 8. Curve-based Boolean sum construction of a Coons patch.

3.2 Reparameterization using GBC-based paremeters
Similar to tensor-product Bézier surfaces, we can express the Coons
patch in terms of generalized barycentric coordinates. Let Ω be a
planar convex quadrilateral with vertices {v� }4�=1. For each point

ACM Trans. Graph., Vol. 43, No. 6, Article 220. Publication date: December 2024.
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(�,�) ∈ Ω, there exists a unique (�, �) that determines the bilinear
coordinates {�� }4�=1 by Equation (5) which satisfy Equation (4).
Then we have

1 − � = �1 + �2, � =
�2

�1 + �2
,

� = �2 + �3, � =
�3

�2 + �3
,

� = �3 + �4, 1 − � =
�4

�3 + �4
,

1 − � = �4 + �1, 1 − � =
�1

�4 + �1
.

(8)

Assuming

C1 (�) = Cu0 (�),
C2 (�) = C1v (�),
C3 (�) = Cu1 (1 − �),
C4 (�) = C0v (1 − �),

(9)

so all the boundary curves are in a counterclockwise direction (see
Fig. 8). Substituting Equations (8) and (9) into Equations (6) and (7),
we obtain

S����� (�,�) =
4∑

�=1
(�� + ��+1) · C�

(
��+1

�� + ��+1

)
−

4∑
�=1

�� · p� .

(10)

Remark 1. The GBC-based parameterization ��+1
��+��+1 could be

regarded as a projection from a point inside Ω onto the �-th edge
e� = {(1 − �) · v� + � · v�+1 | � ∈ [0, 1]}. This parameterization origi-
nated from the sweeping line parameterization of the Charrot–Gregory
patch [Charrot and Gregory 1984] and was later derived by Várady et
al. [Várady et al. 2016, 2024] using generalized barycentric coordinates.
The value of parameter ��+1

��+��+1 must be constrained within the range
[0, 1] to ensure its validity. Therefore, the generalized barycentric
coordinates de�ning the patch must satisfy non-negativity.

The original Coons patch is constructed by surface-based Boolean
sum and the new expression by curve-based Boolean sum. An in-
tuitive explanation is that each corner point lies on two curves, so
it is calculated twice and needs to be subtracted once (see Fig. 8).
The original Coons patch uses bilinear coordinates, so it only de-
�nes over planar convex quadrilaterals, while the new expression
is independent of generalized barycentric coordinates. Thus, it can
be de�ned over planar concave quadrilaterals. Fig. 9 shows a case
of concave con�guration of boundary curves. In this scenario, the
original Coons patch exhibits fold-over, whereas the new expres-
sion avoids fold-over by utilizing mean value coordinates that are
well-de�ned over concave quadrilaterals.

3.3 Multi-sided generalization
The new expression (Equation (10)) of the Coons patch could be
directly generalized to multi-sided cases. Give � boundary curves
{C� (�) | � ∈ [0, 1]}�

�=1, they form a loop, that isC� (0) = C�−1 (1) =
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Fig. 9. The original Coons patch S����� (�, �) vs. The new expression
S����� (�, �) . From le� to right: the input concave configuration, the pa-
rameter domains, and the generated Coons patches.

p� .1 Let Ω be an�-sided planar polygonwith vertices {v� }��=1. Then
the�0 generalized Coons patch that de�nes over Ω and interpolates
all prescribed boundary curves is

S�� (�,�) =
�∑

�=1
(�� + ��+1) · C�

(
��+1

�� + ��+1

)
−

�∑
�=1

�� · p� , (11)

where (�,�) ∈ Ω and {�� }��=1 are the generalized barycentric coor-
dinates of (�,�) with respect to the � vertices.

Remark 2. The internal continuity of a �0 GC patch depends on
the continuity of the generalized barycentric coordinates used and
the continuity of the prescribed boundary curves. For instance, if the
generalized barycentric coordinates used are�� continuous within the
domain polygon and the boundary curves are�� continuous, then the
resulting �0 GC patch has a ����{�,�} continuity in the interior.

Theorem 3.1. [Generalized barycentric reproduction] When the in-
put boundary con�guration is exactly the parametric domain polygon
Ω, that is

C� (�) = (1 − �) · v� + � · v�+1, � = 1, 2, . . . , �, (12)

then the�0 GC patch will reproduce the generalized barycentric inter-
polation.

Proof. Substituting Equation (12) into Equation (11), we obtain

S�� (�,�) =
�∑

�=1

{
(�� + ��+1) ·

[(
1 − ��+1

�� + ��+1

)
· v�

+ ��+1
�� + ��+1

· v�+1
]}

−
�∑

�=1
�� · v�

=
�∑

�=1
(�� · v� + ��+1 · v�+1) −

�∑
�=1

�� · v�

=
�∑

�=1
�� · v� .

�

1Here, we use the cyclic index and hence identify the index � + 1 with 1 and the index
0 with �.
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Fig. 10. �0 GC patches defined over various domains. Top row: the �0 GC patches that interpolated given boundary curves. Bo�om row: corresponding
domains and input boundary configurations. From le� to right: convex polygonal; concave polygonal; convex polyhedral; concave polyhedral; and non-manifold.
HCs were used for the patch evaluation.

In addition, for the case of triangles, the �0 GC patch will re-
produce the triangular Coons patch [Barnhill 1977; Marshall 1975;
Nielson 1979]. Therefore, the �0 GC patch uni�es and generalizes
both the Coons and the triangular Coons patch, much like the S-
patch uni�es and generalizes the tensor-product and triangular
Bézier patch.

3.4 Link with previous work
The�0 GC patch (Equation (11)) has strong connections with previ-
ous work, particularly with the Charrot–Gregory patch [Charrot
and Gregory 1984] and the ribbon-based �1 GC patch [Salvi et al.
2014]. The �0 GC patch is a general �0 case of both, where the
subpatches or ribbons must degenerate into curves.
Link with Charrot–Gregory patch. For Equation (11), if we use a

regular polygon as the parametric domain and apply Wachspress co-
ordinates as the parameters, the resulting surface will be equivalent
to the �0 version of the Charrot–Gregory patch.
Link with the ribbon-based �1 GC patch. This patch employs a

surface-based Boolean sum construction with constrained parame-
terization. However, for�0 interpolation, the cross-boundary deriva-
tives will be removed, and the surface-based Boolean sum construc-
tionwill degenerate into a curve-based Boolean sum. Then, Equation
(11) will be reproduced by replacing the constrained parameteriza-
tion with GBC-based parameterization in the survey [Várady et al.
2024].

3.5 Higher Dimensions and Non-manifold Topologies
The �0 GC patch can be easily extended to higher dimensions. To
the best of our knowledge, there is very little work concerning
interpolation over polytopes in higher dimensions, such as [Randri-
anarivony 2011] (�0 interpolation over convex polytopes) and [Qin
et al. 2024] (�2 interpolation over simple convex polyhedra).
Given �
 boundary curves {C�, � (�) | � ∈ [0, 1]} in R�+� with

� ≥ 0, they form a curved polyhedral skeleton P with � corner
points {p� }��=1 and satisfy

C�, � (0) = p� , C�, � (1) = p� .

Φ is a polytope in R� with � vertices {v� }��=1 and �
 edges E =
{e�, � = (1 − �) · v� + � · v� | � ∈ [0, 1]}, which is homeomorphic to
P. Then, the �0 GC patch that de�nes over Φ and interpolates all
prescribed boundary curves is

S�� (x) =
∑

e�,� ∈E
(�� + � � ) · C�, �

(
� �

�� + � �

)
−

�∑
�=1

(�� − 1) · �� · p� ,

(13)
where x ∈ Φ and {�� }��=1 are the generalized barycentric coordi-
nates of x with respect to the � vertices, and �� is the degree of
v� .

Equation (11) is a particular case of Equation (13), as in the 2D
scenario, each vertex of the polygon has an ordinary degree of 2.
By simple calculation, we can derive the following two corollaries.
Since the proofs follow the same approach as Theorem 3.1, we omit
them here.

Corollary 1. The 3D �0 GC patch also satis�es the property of
generalized barycentric reproduction.

Corollary 2. Each boundary surface of a 3D�0 GC patch is a 2D
GC patch.

Moreover, the �0 GC patch de�ned by Equation (13) can be ex-
tended to non-manifold topologies. For simplicity’s sake, consider
the 2D case. Inside a planar polygon are some additional isolated
vertices, linear edges, or planar faces. For an isolated vertex v� , it
does not lie on any edge, so its corresponding point p� is not calcu-
lated in the �rst term of the right-hand side of Equation (13). But its
degree is 0, so the corresponding point will be added once in the sec-
ond term, i.e., −(0− 1) · �� · p� . For internal linear edges and planar
faces, the situation is similar. Therefore, the�0 GC patch still works
for such non-manifold topologies, as long as we utilize generalized
barycentric coordinates well-de�ned over non-manifold topologies,
e.g., harmonic coordinates [Joshi et al. 2007]. Fig. 10 shows �0 GC
patches de�ned over 2D and 3D with various topologies.
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(a) (b) (c) (d) (e) (f)

Fig. 11. High-order Cage-based Deformation using free-form curves. (a) The original linear cage. (b) The bo�om linear edge is elevated into cubic Bézier form.
(c) The bo�om cubic Bézier edge is deformed. (d) The bo�om degree elevated linear edge is transformed into cubic B-spline form with an open uniform knot
vector [0, 0, 0, 0, 1, 1, 1, 1]. (e) The bo�om cubic B-spline edge is knot-inserted. (f) The bo�om knot-inserted cubic B-spline edge is deformed.

S-
pa

tc
h

�
0
G
C
pa

tc
h

Fig. 12. Basis functions associated with some inserted control points in
Fig. 1. The boundary control points inserted by the �0 GC patch have a
stronger global influence than the S-patch. Top row: S-patch. Bo�om row:
�0 GC patch.

4 HIGH-ORDER CAGE-BASED DEFORMATION
We derive the high-order cage-based deformation method from the
�0 GC patch introduced above. The key idea is �rst to reproduce
the entire cage space using the �0 GC patch with linear boundaries
(i.e., Equation (12)) and then deform the cage space by modifying
these boundary curves.

4.1 Deformation using free-form curves
Bézier curves are the simplest and most commonly used free-form
curves. It can be found thatC� (�) (Equation (12)) is a degree 1 Bézier
curve determined by the Bézier points v� and v�+1. Then, by using
the degree elevation formula, we can obtain a curve of a higher
degree, which preserves the same geometry but has more control
points. Finally, moving these control points generates a desired

A
sy
m
m
et
ri
c

Sy
m
m
et
ri
c

Fig. 13. Twisting a bar by �
2 in clockwise and counterclockwise directions

using asymmetrically and symmetrically triangulated cages. Top row: each
quadrilateral is directly split into 2 triangles. Bo�om row: each quadrilateral
is split into 4 triangles by the centroid. MVCs were used for deformation.

Bézier curve, meaning the linear cage is deformed into a curved
cage (see Fig. 11).
When using Bézier curves, our method looks similar to [Smith

and Schaefer 2015]. However, it is important to note that our method
di�ers fundamentally from theirs. Their method essentially utilizes
the elevation algorithm of S-patches (i.e., multivariate Bernstein
polynomials), whereas our method only employs the degree eleva-
tion of Bézier curves (i.e., univariate Bernstein polynomials). Fig. 12
shows that the same control points inserted by the two methods
have di�erent in�uences in the domain.
Bézier curves may not �t the control polyline well for high de-

grees. Then, using B-spline curves would be a good choice, as they
possess local support. Here, we use cubic B-splines, which have a
global second-order continuity. First, the original linear edge C� (�)
(Equation (12)) is elevated to a cubic Bézier curve with a colinear
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Fig. 14. Automatic se�ing of the deformed spli�ing edges. Q: the original
quadrilateral cage. T: the original symmetrically triangulated cage with
linear spli�ing edges. T̃ : the deformed high-order triangular cage with high-
order spli�ing edges. (a) The original quadrilateral with vertices {v�� }4�=1.
(b) The original quadrilateral is symmetrically triangulated via the centroid
v�5 and the 4 spli�ing linear edges {e�� ,�5 }4�=1. (c) The diagonal (green)

curves {Ĉ�� ,�5 }4�=1 of the bilinear patch determined by the updated 4 ver-
tices {v̂�� }4�=1. (d) The diagonal (green) curves {C�� ,�5 }4�=1 of the bilinear
patch determined by the original 4 vertices {v�� }4�=1. (e) The deformed

spli�ing edges {C̃�� ,�5 = Ĉ�� ,�5 + (e�� ,�5 − C�� ,�5 ) }4�=1 (yellow curves).

control polyline. Then, transform the degree elevated cubic Bézier
curve into a cubic B-spline curve with an open uniform knot vector
[0, 0, 0, 0, 1, 1, 1, 1]. Next, by inserting knots, we obtain additional
control points. Finally, by moving the control points, the original
linear edge is deformed into a cubic B-spline curve (see Fig. 11).
In addition, by introducing weights, we can use NURBS curves

with more substantial representation capabilities (see Fig. 16).

4.2 Pseudo-quad cage-based deformation
As stated in the survey [Ströter et al. 2024], most 3D generalized
barycentric coordinates rely on triangular cages, with only a few
cage coordinates being well-de�ned on polygon meshes. For de-
signers or artists, the more common choice might be quadrilateral
meshes. QMVC [Thiery et al. 2018] handles non-planar quadrilateral
meshes, but it may produce negative values for non-convex cages.
HC [Joshi et al. 2007] handles planar polygon meshes and ensure
non-negativity, but it may encounter di�culties when dealing with
non-planar quadrilateral meshes [Ströter et al. 2024]. Therefore,
it is often necessary to triangulate the quadrilateral cages. Fig. 13
demonstrates that using asymmetrically triangulated quadrilateral
cages for deformation results in counterintuitive asymmetric out-
comes despite symmetric operations. On the contrary, the symmetry
during deformation is preserved using symmetrically triangulated
quadrilateral cages.

However, deformation using symmetrically triangulated quadri-
lateral cages still leads to undesired triangulation artifacts. We pro-
pose a pseudo-quad cage-based deformationmethod to address this is-
sue. An important observation is that the splitting edges cause these
artifacts. Triangulation leads to non-smoothness on the quadrilateral
faces, speci�cally along the splitting edges, and this non-smoothness
will a�ect the interior (see Fig. 13). Therefore, appropriately adjust-
ing these splitting edges would reduce triangulation artifacts.

We adopt a simple and e�ective strategy to automatically set the
deformed splitting edges. For a quadrilateral v�1v�2v�3v�4 , it is split
into 4 triangles by its centroid v�5 =

∑4
�=1 v�� /4, where {e�� ,�5 }4�=1

are the 4 linear splitting edges. During the deformation process, we
only need to manually update the positions of the vertices of the
original quadrilateral, i.e., {v�� }4�=1 → {v̂�� }4�=1. v�5 is transformed
into the centroid v̂�5 of the new quadrilateral v̂�1 v̂�2 v̂�3 v̂�4 . To reduce
triangulation artifacts, these linear splitting edges {e�� ,�5 }4�=1 are
mapped to high-order curved edges. A simple and natural choice
is to map them to the diagonal curves {Ĉ�� ,�5 }4�=1 of the bilinear
patch determined by {v̂�� }4�=1. But this raises a problem: when the
vertices of the quadrilateral fall back to their initial positions, these
diagonal curves {C�� ,�5 }4�=1 usually cannot reproduce the original
linear splitting edges unless the quadrilateral is a parallelogram. To
overcome this problem, we apply displacements to these high-order
curved splitting edges so that they can fall back to their original
linear form. That is, the original 4 linear splitting edges are deformed
into 4 high-order curved splitting edges {C̃�� ,�5 = Ĉ�� ,�5 + (e�� ,�5 −
C�� ,�5 )}4�=1 (see Fig. 14).

5 RESULTS
In this section, we present some examples, including 2D deformation
and 3D deformation, to demonstrate the advantages of our method.

5.1 2D deformation
2D deformation using cubic Bézier curves. Fig. 1 presents a compari-
son of di�erent methods, including linear CBD, cubic MVC [Li et al.
2013], selective degree elevation of the S-patch [Smith and Schaefer
2015], and the �0 GC patch. We used linear cages of di�erent res-
olutions for linear CBD, containing 8 vertices, 24 vertices, and 72
vertices, respectively. The other methods used the same cubic cage
with 8 vertices. All methods except for cubic MVC used HC for the
calculations. The deformation results of linear CBD are non-smooth
at the boundaries, whereas high-order methods maintain smooth
boundaries. Cubic MVC produces severe artifacts because it has
negative values for concave polygons. As for the selective degree
elevation method, the inserted boundary control points belong to
a high-order S-patch and have weak control over the interior, so
artifacts (green rectangle) in the result occur near the boundary.
In contrast, the �0 GC patch-based method propagates boundary
deformations to the interior in a reasonable manner (see Fig. 12).
Compared to other methods, our approach produces a better result,
evident in smoother deformations and fewer artifacts.

2D deformation using B-spline curves. Fig. 15 shows the di�erences
in high-order deformation results between using Bézier and B-spline
curves with the same cages.When deforming some long edges, using
B-spline curves with locality for deformationmight yield results that
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Original S-patch �0 GC patch with Bézier �0 GC patch with B-spline

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Fig. 15. Snake & Lotus. From le� to right: the original objects; high-order CBD results by selective degree elevation of the S-patch; high-order CBD results by
�0 GC patches with Bézier boundaries; and high-order CBD results by�0 GC patches with B-spline boundaries. Green rectangle: fold-over. HCs were used for
the patch evaluation (both the S-patches and the�0 GC patches).

Original Cubic MVC S-patch �0 GC patch
w/o rational

�0 GC patch
��=1,2 = (1 + √

2)/3
�0 GC patch
��=1,2 = 12

Fig. 16. The original object is an octagon with a hole, and the vertices lie on two circles (blue solid lines). Using the same cubic cage but di�erent methods of
deformation, each linear edge was transformed into a (rational) cubic Bézier curve (red dashed lines). Cubic MVC and selective degree elevation method only
handle polynomial boundaries, but the�0 GC patch is also applicable to rational polynomial boundaries. HCs were used for the patch evaluation (both the
S-patch and�0 GC patches).
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(a) (b) (c) (d)

Fig. 17. Crab & Lotus-leaves. (a) & (c) the original objects. (b) & (d) the deformed objects. HCs were used for the patch evaluation.

better meet the user’s expectations. We also present the deformation
results using selective degree elevation of the S-patch. The �gure
shows that their method produces severe counterintuitive artifacts
(green rectangle) during deformations, even when the deformations
are not large-scale. For the Lotus image, our method produces
slight folding (green rectangle) near the corner when using B-spline
because the local deformation, caused by the locality, is too severe.

2D deformation using rational Bézier curves. Unlike existing meth-
ods that only handle polynomial boundaries, our method also han-
dles rational polynomial boundaries. Fig. 16 illustrates the defor-
mation results obtained using rational cubic Bézier curves. By in-
troducing weights for control points, the �0 GC patch has greater
representational capability. The �gure shows that by setting the
weights to (1, (1 + √

2)/3, (1 + √
2)/3, 1), our method transformed

each linear edge into a quarter-circle, which cubic MVC and selec-
tive degree elevation method can not. By increasing the weights
of the two middle control points of each edge, the boundary curve
will be pulled toward the control polyline, thereby deforming the
interior.

2D deformation of non-manifold topologies.The�0 GCpatch-based
method handles non-manifold topologies as long as the used gener-
alized barycentric coordinates are well-de�ned. Fig. 17 presents the
deformation results of non-manifold topologies. The �gure presents
that the deformation is not smooth when crossing internal bound-
aries, as HCs are only �0 at the boundaries. However, users still
bene�t from this deformation, as shown in the �gure, by introducing
additional isolated edges to edit the feature lines in the images.

5.2 3D deformation
3D deformation using cubic Bézier curves. Fig. 18 compares the de-
formation results of twisting a bar using di�erent methods. When
using the original linear cage (8 vertices) to twist the bar by � , the
result was inferior, with the middle part collapsing into a single
point. Using a re�ned cage (16 vertices) could improve the linear
deformation results; however, the linear boundaries still a�ect the
interior, leading to a visually “unsmooth” appearance. High-order

deformation produces smoother results. However, using selective
degree elevation of the S-patch for deformation, the bar exhibits
a certain degree of shrinkage, similar to the 2D case, due to the
weaker internal control exerted by inserted boundary points. Com-
pared to other methods, the result obtained using a�0 GC patch for
deformation is more natural and smoother. Fig. 19 shows a similar
comparison of bending the bar.
Pseudo-quad cage-based deformation. Fig. 20 shows the deforma-

tion of a complex model Spikybox. The original cage is a con-
vex quadrilateral cage. Deformation using MVC with triangulated
quadrilateral cages results in apparent triangulation artifacts. Our
pseudo-quad cage-based deformation signi�cantly reduces the un-
desired artifacts. The result is similar to that obtained using QMVC.
Fig. 21 shows a more complex example of the deformation of the
Cactus model, where the original cage is a non-planar concave
quadrilateral cage. In this case, QMVC deformation resulted in coun-
terintuitive artifacts (red rectangle) due to negative coordinates.
Deformation using HC with triangulated quadrilateral cages avoids
these counterintuitive artifacts but introduces triangulation artifacts
(blue rectangle). The pseudo-quad cage-based deformation method
avoids these artifacts and produces a result more closely aligns
with expectations. However, we must emphasize that our method
is merely a compromise as we just use triangulated quadrilateral
cages.

6 LIMITATIONS
The �rst limitation of our method is that the generalized barycentric
coordinates we used must satisfy the non-negativity. When nega-
tive generalized barycentric coordinates are input, extreme artifacts
will result. In contrast, previous work [Langer et al. 2008; Smith
and Schaefer 2015] has shown that S-patches still work even if the
generalized barycentric coordinates have negative values. Never-
theless, S-patches cannot avoid counterintuitive artifacts caused by
negative coordinates. Over the past two decades, researchers have
been dedicated to constructing non-negative generalized barycen-
tric coordinates [Chang et al. 2023; Dodik et al. 2023; Hormann and
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Original

QMVC 8 vertices QMVC 16 vertices S-patch �0 GC patch

Fig. 18. Bar-twisting. Twisting a bar by � in a clockwise direction. From le� to right: the original object; QMVC deformation with 8 vertices; QMVC
deformation with 16 vertices; deformation using selective degree elevation of the S-patch; and deformation using�0 GC patch. QMVCs were used for the
patch evaluation (both the S-patch and the�0 GC patch).

QMVC S-patch

�0 GC patch

Fig. 19. Bar-bending. Top le�: QMVC deformation with 16 vertices. Top
right: deformation using selective degree elevation of the S-patch. Bo�om:
deformation using�0 GC patch. QMVCs were used for the patch evaluation
(both the S-patch and the�0 GC patch).

Sukumar 2008; Joshi et al. 2007; Lipman et al. 2007]. Therefore, this
limitation will not hinder the use of our method. In addition, since
the high-order methods rely on generalized barycentric coordinates,
if the input coordinates (e.g., MEC) are not “geometry-aware,” the
deformation results will also be suboptimal (compared with HC)
(see Fig. 22).

Original QMVC MVC Pseudo-quad
CBD with MVC

Fig. 20. Spikybox. From le� to right: the original object; QMVC deforma-
tion; MVC deformation; and pseudo-quad cage-based deformation.

The second limitation is that our GC patches only achieve �0

interpolation, which may not suit for cage networks. Although var-
ious parametric polygonal trans�nite interpolation surfaces exist
that achieve high-order interpolation, as stated earlier, they are un-
suitable for deformation. It is worth investigating how to construct
a trans�nite interpolation scheme that achieves both high-order
interpolation and satis�es the property of generalized barycentric re-
production. Additionally, some generalized barycentric coordinates
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Original

QMVC HC Pseudo-quad CBD with HC

Fig. 21. Cactus. From le� to right: the original object; QMVC deformation; HC deformation; and pseudo-quad cage-based deformation.

M
VC

M
EC

�0 GC patch S-patchLinear

Fig. 22. Deforming the original pant-shape polygon in Fig. 1 by di�erent
coordinates. Top row: MVC. Bo�om row: MEC. From le� to right: linear
CBD; deformation using �0 GC patch; and deformation using selective
degree elevation of the S-patch. Since the original cage is concave, MVC
produces negative values. Although MEC [Hormann and Sukumar 2008]
ensures non-negativity, its prior function is not “geometry-aware” [Ströter
et al. 2024]. Whether the deformation is linear or high-order, the results
obtained using MVC and MEC are inferior compared to those using HC.

are capable of achieving high-order interpolation, such as bihar-
monic coordinates [Weber et al. 2012] and moving least squares
coordinates [Manson and Schaefer 2010]. We speculate that these
generalized barycentric coordinates might apply to our method.

Moreover, we currently do not have a method to ensure injectivity
during the high-order CBD process (see Fig. 15). It is necessary to
study the regularity of�0 GC patches to address this issue, which is
undoubtedly very challenging because it involves composite func-
tions of generalized barycentric coordinates. It is worth noting that
[Randrianarivony 2007] studied the regularity of planar Coons maps
with polynomial boundaries.

7 CONCLUSION
We have introduced the�0 GC patch, which uni�es and generalizes
the Coons patch and the triangular Coons patch. The �0 GC patch
is de�ned in 2D domains and 3D domains or higher-dimensional
domains with arbitrary polytopes, including non-manifold topolo-
gies. Besides, the �0 GC patch satis�es the property of generalized
barycentric reproduction. By combining the degree elevation of
Bézier curves and the knot insertion of B-spline curves, we have
successfully applied the�0 GC patch to space deformation, enabling
high-order CBD. Compared to linear CBD, high-order CBD o�ers
more freedom and acquires smoother results. Moreover, except for
the non-negativity constraint, the �0 GC patch is independent of
the choice of generalized barycentric coordinates. Our method may
promote the application of the CBD technique and inspire further
research on generalized barycentric coordinates.
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