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In recent years, there has been growing interest in the representation of volumes within the field 
of geometric modeling (GM). While polygonal patches for surface modeling have been extensively 
studied, there has been little focus on the representation of polyhedral volumes. Inspired by the 
polygonal representation of the Generalized Bézier (GB) patch proposed by Várady et al. (2016), 
this paper introduces a novel method for polyhedral volumetric modeling called the Generalized 
Bézier (GB) volume.
GB volumes are defined over simple convex polyhedra using generalized barycentric coordinates

(GBCs), with the control nets which are a direct generalization of those of tensor-product Bézier 
volumes. GB volumes can be smoothly connected to adjacent tensor-product Bézier or GB volumes 
with 𝐺1 or 𝐺2 continuity. Besides, when the parametric polyhedron becomes a prism, the GB 
volume also degenerates into a tensor-product form. We provide some practical examples to 
demonstrate the advantages of GB volumes. Suggestions for future work are also discussed.

1. Introduction

In geometric modeling, a 3D object is usually represented as a collection of surfaces (e.g., trimmed tensor-product surfaces) that 
bound the object, that is, boundary representation (B-rep) (Cohen et al., 2001). However, accompanied by the development of Iso-
geometric Analysis (IGA) (Hughes et al., 2005) and additive manufacturing (AM) (Paolini et al., 2019) in recent years, there exists 
a need for a full volumetric representation (V-rep) of 3D objects. This implies that not only the boundaries but also the interior of 
the object should be well-defined. In surface modeling, only the continuity between two adjacent surfaces (along a common curve) 
needs to be considered; but in volumetric modeling, the constraint of continuity between two adjacent volumes (along a common 
surface) should be satisfied.

Tensor-product volumes (e.g., tensor-product Bézier volumes (Bézier, 1978; Lasser, 1985)) are widely used in volumetric model-
ing. A tensor-product volume is usually defined over a rectangular prism and its topology is typically that of a hexahedron. Generally 
speaking, a tensor-product volume has six boundary surfaces and each of these is a quadrilateral patch.

Therefore, it seems that tensor-product volumes may not always be suitable for any case. In surface modeling, irregular regions 
(i.e., regions that are not four-sided) often occur, and multi-sided surfaces are required to fill holes (Goldman, 2004; Peters, 2019). 
Until now, the construction of multi-sided patches (Várady et al., 2024) has been an active topic in the field of computer aided 
geometric design (CAGD). Unfortunately, the irregular regions seem to be more complicated to handle in volumetric modeling. There 
may be a polyhedral region that has an arbitrary number of boundary surfaces, and not all of these surfaces may be quadrilateral 
patches, for example, the irregular regions of unstructured hexahedral meshes.
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Fig. 1. Internal irregular regions on unstructured hexahedral meshes are homeomorphic to simple convex polyhedra.

As a discrete volumetric representation, unstructured hexahedral meshes are commonly used in finite element analysis (FEA) 
and other numerical simulations. Also, subdivision schemes have been extended to hexahedral meshes as a simple and efficient 
technique for volumetric modeling (e.g., Catmull–Clark volumetric subdivision (MacCracken and Joy, 1996)). Recently, researchers 
have been utilizing unstructured hexahedral meshes as input control meshes for IGA (Wei et al., 2018). Indeed, irregularities (i.e., 
extraordinary edges/vertices) of unstructured hexahedral meshes seem to be inevitable and very difficult to deal with. In addition, 
the internal extraordinary edges are dual to prismatic volumes, while the very extraordinary vertices in the interior are dual to 
polyhedral volumes (Reif and Sabin, 2019), see Fig. 1.

It can be found that the topology of internal irregular regions on unstructured hexahedral meshes are simple convex polyhedra

in which all vertices have three incident faces.1 Therefore, we are particularly interested in the construction of simple convex polyhedral 
volumes in this paper.

Although a considerable amount of literature on volumetric modeling has been published, few have focused on polyhedral 
volumes. Lasser (1987) defined a pentahedral Bézier (PB) volume which is a tensor-product of triangular Bernstein-Bézier surfaces 
and homeomorphic to a triangular prism. Randrianarivony (2011) generalized the conventional transfinite interpolation (Coons, 1967; 
Charrot and Gregory, 1984) to general convex polytopes via Gregory corner blending (Gregory, 1985). Randrianarivony’s approach 
will generate a simple convex polyhedral volume that interpolates given boundary surfaces (𝐺0) in 3D case. Haberleitner et al. 
(2019) proposed a method that divides an irregular region called MS3 (midpoint subdivision suitable solids) which is homeomorphic 
to a simple convex polyhedron into topological cuboids by midpoint subdivision. This method bears some resemblance to the 
macro-patch construction, which divides an 𝑛-sided region into 𝑛 quadrilaterals. These topological cuboids are connected with 
only 𝐺0 continuity. Peters (2020) constructed refinable globally 𝐶1 continuous splines on unstructured hexahedral meshes with 
singular corner parameterization and the first-order derivatives will vanish at irregularities. Besides, we should mention that the FEA 
community has also been researching the construction of appropriate shape functions on polyhedral elements, as demonstrated by 
recent works such as Schneider et al. (2019) and Bunge et al. (2022).

In surface modeling, a multi-sided patch is required to fulfill smoothness constraints both along the boundaries and in the 
interior. For example, a multi-sided Bézier patch is usually requested possessing tensor-product Bézier surface boundaries (Várady et 
al., 2016; Goldman, 2004; Qin et al., 2023). That is, a multi-sided Bézier patch should behave like a tensor-product Bézier patch, both 
in positional and differential senses, along each boundary curve. Thus its boundary curves are Bézier curves and the corresponding 
cross-derivatives vector-valued Bézier curves. From this perspective, a polyhedral Bézier volume should

1. behave like a tensor-product Bézier volume along each quadrilateral boundary surface,
2. and a “tensor-product multi-sided Bézier volume” along each non-four-sided boundary surface.

A “tensor-product multi-sided Bézier volume” exactly implies a prismatic volume which is the tensor-product of multi-sided Bézier 
patches (similar to the PB volume). Thus the boundary surfaces of a polyhedral Bézier volume are tensor-product or multi-sided 
Bézier surfaces and the corresponding cross-derivatives vector-valued tensor-product or multi-sided Bézier surfaces.

Recently, Várady et al. (2016) proposed a multi-sided Bézier patch — the generalized Bézier (GB) patch which is defined using 
generalized barycentric coordinates (GBCs) (Floater, 2015) over planar polygons. Inspired by this multi-sided surfacing scheme, we 
propose a novel volumetric modeling method, the generalized Bézier (GB) volume. A GB volume is a control-point-based volume 
defined over a simple convex polyhedron and represents a natural extension of tensor-product Bézier volumes. The main advantages 
of this method are summarized as follows.

• A GB volume behaves as a tensor-product Bézier volume along each quadrilateral boundary surface.
• A GB volume behaves as a tensor-product GB volume (see Section 3) along each multi-sided boundary surface.
• A GB volume can be easily connected to adjacent tensor-product Bézier or another (tensor-product) GB volume with high order 

geometric continuity (𝐺1 or 𝐺2).
• A GB volume will reproduce a tensor-product GB volume while the domain polyhedron becomes a prism.
2

1 Floater (2015) used the term ‘simple convex polyhedra’ to refer to such polyhedra, and we have adopted the same terminology.
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Fig. 2. A lofting curve inside a tri-cubic tensor-product Bézier volume, controlled by the yellow control points lying on the different layer of Bézier surfaces. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In addition, our contribution goes beyond just proposing a polyhedral volumetric modeling method. We also provide an idea for 
extending the concept from polygonal patches to polyhedral volumes. Thus, the existing polygonal patch schemes, such as multi-
sided transfinite interpolation surfaces (Várady et al., 2011), might be also extended to volumes by leveraging our approach. We also 
present a polyhedral Bézier extraction algorithm that enables the construction of a globally smooth volume from any input hexmesh 
with arbitrary irregularities or from input simple-convex-polyhedral meshes.

The remainder of this paper is organized as follows. In Section 2 we provide some preliminaries on tensor-product Bézier volumes 
and GB patches. Then we define tensor-product GB volumes in Section 3 before constructing our GB volumes in Section 4. Some 
examples are shown in Section 5. We discuss the limitations of GB volumes and further work in Section 6 and finally conclude this 
paper in Section 7.

2. Preliminaries

2.1. Tensor-product Bézier volume

Here we consider a degree 𝑑 tensor-product Bézier volume V(𝑢, 𝑣, 𝑤) defined with Bézier points {C𝑖,𝑗,𝑘}𝑑𝑖,𝑗,𝑘=0.

V(𝑢, 𝑣,𝑤) =
𝑑∑

𝑖=0

𝑑∑
𝑗=0

𝑑∑
𝑘=0

C𝑖,𝑗,𝑘 ⋅𝐵
𝑑
𝑖,𝑗,𝑘

(𝑢, 𝑣,𝑤),

where (𝑢, 𝑣, 𝑤) ∈ [0, 1]3 and 𝐵𝑑
𝑖,𝑗,𝑘

(𝑢, 𝑣, 𝑤) = 𝐵𝑑
𝑖
(𝑢) ⋅𝐵𝑑

𝑗
(𝑣) ⋅𝐵𝑑

𝑘
(𝑤) is the trivariate Bernstein basis function.

It is well-known that a tensor-product volume can be thought of as being swept out by a moving and deforming isoparametric 
surface (Hoschek et al., 1993). Generally speaking, the volume V(𝑢, 𝑣, 𝑤) is the locus of a Bézier surface that is moving through space 
and thereby changing its shape. Each point on the surface moves through space along a lofting curve. A lofting curve is a degree 
𝑑 Bézier curve determined by a set of control points. Each control point moves through space on a Bézier surface controlled by the 
corresponding layer. Thus, V(𝑢, 𝑣, 𝑤) can be represented as

V(𝑢, 𝑣,𝑤) =
𝑑∑

𝑘=0
S𝑘(𝑢, 𝑣) ⋅𝐵𝑑

𝑘
(𝑤),

where S𝑘(𝑢, 𝑣) =
∑𝑑

𝑖=0
∑𝑑

𝑗=0 C𝑖,𝑗,𝑘 ⋅𝐵
𝑑
𝑖,𝑗
(𝑢, 𝑣) is a degree 𝑑 tensor-product Bézier surface determined by the 𝑘-th layer of control points. 

Fig. 2 shows a lofting curve inside a tri-cubic tensor-product Bézier volume.

2.2. Generalized Bézier (GB) patch

The generalized Bézier (GB) patch is a multi-sided Bézier patch with a simple control structure (Várady et al., 2016). An 𝑛-
sided degree 𝑑 GB patch is defined over a convex 𝑛-sided polygon 𝛀 with 𝑛 vertices v1, v2, … , v𝑛. Its control net is a multi-sided 
generalization of those of the tensor-product Bézier patches. The topology of the control net is determined by 𝑛 and 𝑑.

An 𝑛-sided GB patch is a composition of 𝑛 side-Bézier ribbons. Each side-Bézier ribbon consists of half-Bézier control points 
multiplied by the corresponding weighted Bernstein polynomials. The weighted Bernstein polynomials are determined by local 
parameters which are computed using Wachspress coordinates (Wachspress, 1975).

Local control net of a side-Bézier ribbon. Várady et al. regarded an 𝑛-sided Bézier control net as 𝑛 overlapping half-Bézier 
3

control nets which belong to 𝑛 side-Bézier ribbons. A local control net, denoted by {C𝑖
𝑗,𝑘
}𝑑,𝑙
𝑗,𝑘=0, has (𝑙 + 1) ⋅ (𝑑 + 1) control points 
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Fig. 3. Local control nets. Left: a 5-sided degree 4 control net. Right: a 5-sided degree 5 control net. The (𝑖 − 1)-th, 𝑖-th and (𝑖 + 1)-th local control nets fall into green, 
red and blue frames, with respect. The control points of 𝑖-th local control net are colored differently according to their weights (◦∙: 𝛼𝑖 ; ◦∙: 𝛽𝑖 ; ◦∙: 1; and ◦∙: 𝐵𝑙+1,𝑙+1).

Fig. 4. Local parameterization. A pentagonal domain (left) is reparameterized into a unit square (right).

where 𝑙 = ⌊(𝑑 − 1)∕2⌋. Two adjacent local control nets share (𝑙 + 1) ⋅ (𝑙 + 1) control points around the corner. Remark, when degree 
𝑑 is even, there exists a central control point C𝑙+1,𝑙+1 besides local control nets (see Fig. 3).

Local parameterization. For each side 𝚪𝑖 = {(1 −𝜆)v𝑖+𝜆v𝑖+1 | 0 ≤ 𝜆 ≤ 1} of the polygon 𝛀, two local parameters are introduced as 
the side parameter 𝑠𝑖 and the distance parameter ℎ𝑖. For an arbitrary point (𝑢, 𝑣) ∈𝛀, {𝜆𝑖 = 𝜆𝑖(𝑢, 𝑣)}𝑛𝑖=1 are its Wachspress coordinates 
with respect to 𝑛 vertices {v𝑖}𝑛𝑖=1. Then, the two local parameters are defined as

𝑠𝑖 =
𝜆𝑖+1

𝜆𝑖 + 𝜆𝑖+1
, ℎ𝑖 = 1 − (𝜆𝑖 + 𝜆𝑖+1). (1)

By this local parameterization, the whole polygonal domain 𝛀 is reparameterized into a rectangular domain [0, 1]2 along side 𝚪𝑖 (see 
Fig. 4).

Weighted Bernstein polynomials. A local control net {C𝑖
𝑗,𝑘
}𝑑,𝑙
𝑗,𝑘=0 is associated with side 𝚪𝑖 by weighted Bernstein polynomials 

{𝜇𝑖
𝑗,𝑘

𝐵𝑑
𝑗,𝑘
(𝑠𝑖, ℎ𝑖)}

𝑑,𝑙

𝑗,𝑘=0. The weighting function 𝜇𝑖
𝑗,𝑘

is defined as

𝜇𝑖
𝑗,𝑘

=

⎧⎪⎪⎨⎪⎪⎩

𝛼𝑖 =
ℎ3
𝑖−1

ℎ3
𝑖−1+ℎ3

𝑖

, 0 ≤ 𝑗 ≤ 𝑙,

𝛽𝑖 =
ℎ3
𝑖+1

ℎ3
𝑖+1+ℎ3

𝑖

, 𝑑 − 𝑙 ≤ 𝑗 ≤ 𝑑,

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)
4

As for the central control point C𝑙+1,𝑙+1, the blending function is 𝐵𝑙+1,𝑙+1(𝑢, 𝑣) =
1
𝑛

∑𝑛
𝑖=1𝐵

𝑑
𝑙+1,𝑙+1(𝑠𝑖, ℎ𝑖) (see Fig. 3).
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Fig. 5. A 5-sided degree 5 GB patch (left, colored in cyan) behaves along a boundary as a degree 5 tensor-product Bézier patch (right, colored in cyan) having the 
same 3 rows of control points (colored in red). Both the GB and tensor-product Bézier patches (colored in cyan) are smoothly connected to the same ordinary Bézier 
patch (colored in fleshcolor). Top: Shading and control nets. Bottom: Mean curvature (from red via green to blue).

Side-Bézier ribbons. Now the 𝑖-th side-Bézier ribbon R𝑖(𝑢, 𝑣) can be obtained

R𝑖(𝑢, 𝑣) =
𝑑∑

𝑗=0

𝑙∑
𝑘=0

C𝑖
𝑗,𝑘

⋅ 𝜇𝑖
𝑗,𝑘

𝐵𝑑
𝑗,𝑘
(𝑠𝑖, ℎ𝑖). (3)

Each side-Bézier ribbon is treated as a side interpolator and only the 𝑖-th ribbon affects the 𝑖-th side 𝚪𝑖.
The patch equation. Then the final 𝑛-sided degree 𝑑 GB patch S(𝑢, 𝑣) is defined as:

S(𝑢, 𝑣) = 1
𝐵Σ(𝑢, 𝑣)

[
𝑛∑

𝑖=1
R𝑖(𝑢, 𝑣) + C𝑙+1,𝑙+1 ⋅𝐵𝑙+1,𝑙+1(𝑢, 𝑣)], (4)

where

𝐵Σ(𝑢, 𝑣) =
𝑛∑

𝑖=1

𝑑∑
𝑗=0

𝑙∑
𝑘=0

𝜇𝑖
𝑗,𝑘

𝐵𝑑
𝑗,𝑘
(𝑠𝑖, ℎ𝑖) +𝐵𝑙+1,𝑙+1(𝑢, 𝑣).

Note that, the last term C𝑙+1,𝑙+1 ⋅𝐵𝑙+1,𝑙+1(𝑢, 𝑣) exists only if the degree is even.
A GB patch possesses tensor-product Bézier boundaries. That is, along the boundary, a GB patch behaves as an ordinary tensor-

product Bézier patch which has the same three rows (assuming degree 𝑑 ≥ 5) of control points (see Fig. 5).2 For example, on side 𝚪𝑖, 
we have

S(𝑢, 𝑣)|||𝚪𝑖

= R𝑖(𝑢, 𝑣)|||𝚪𝑖

=
𝑑∑

𝑗=0
C𝑖
𝑗,0 ⋅𝐵

𝑑
𝑗,0(𝑠𝑖,0),

𝜕(S(𝑢, 𝑣))|||𝚪𝑖

= 𝜕(R𝑖(𝑢, 𝑣))|||𝚪𝑖

=
𝑑∑

𝑗=0

1∑
𝑘=0

C𝑖
𝑗,𝑘

⋅ 𝜕(𝐵𝑑
𝑗,𝑘
(𝑠𝑖,0)),

𝜕2(S(𝑢, 𝑣))|||𝚪𝑖

= 𝜕2(R𝑖(𝑢, 𝑣))|||𝚪𝑖

=
𝑑∑

𝑗=0

2∑
𝑘=0

C𝑖
𝑗,𝑘

⋅ 𝜕2(𝐵𝑑
𝑗,𝑘
(𝑠𝑖,0)),

(5)

where the notation 𝜕 indicates directional derivatives in an arbitrary direction in the domain.

3. Tensor-product GB volume

Before delving into GB volumes, it is advisable to first explore the tensor-product GB volumes.
5

2 Two rows of control points (with degree 𝑑 ≥ 3) for 𝐺1 continuity.



Computer Aided Geometric Design 111 (2024) 102338K. Qin, Y. Li and C. Deng

Fig. 6. Left: Parametric space spanning by 𝛀 and 𝚵. Middle: The polyhedral domain  . Right: A 5-prismatic degree 4 tensor-product GB volume; and a lofting curve 
inside the tensor-product GB volume, controlled by the red control points lying on the different layer of GB patches.

3.1. Definition of a tensor-product GB volume

By combining the definitions of tensor-product Bézier volumes and GB patches, we can now define a tensor-product GB volume. 
An n-sided polygonal prismatic (𝑛-prismatic for short) degree 𝑑 tensor-product GB volume V(𝑢, 𝑣, 𝑤) is defined by

V(𝑢, 𝑣,𝑤) =
𝑑∑

𝑚=0
S(𝑢, 𝑣,𝑚) ⋅𝐵𝑑

𝑚(𝑤), (6)

where S(𝑢, 𝑣, 𝑚) is an 𝑛-sided degree 𝑑 GB patch defined over an 𝑛-sided polygon 𝛀, with the 𝑚-th layer control net 𝑚, and 
𝑤 ∈ 𝚵 ∶= [0, 1] (see Fig. 6).

𝑚 is defined as

𝑚 =
𝑛⋃

𝑖=1
{C𝑖

𝑗,𝑘,𝑚
}𝑑,𝑙
𝑗,𝑘=0 ∪ C𝑙+1,𝑙+1,𝑚,

where an additional subscript 𝑚 is used to distinct different layers. Please note, as with the aforementioned and the following text, 
the central control point C𝑙+1,𝑙+1,𝑚 only exists when degree 𝑑 is even. We use the notation Δ𝑟 to denote the iterated forward difference 
operator

Δ0𝑚 = 𝑚,

Δ𝑟𝑚 =Δ𝑟−1𝑚+1 − Δ𝑟−1𝑚,

where

𝑚1
− 𝑚2

=
𝑛⋃

𝑖=1
{C𝑖

𝑗,𝑘,𝑚1
− C𝑖

𝑗,𝑘,𝑚2
}𝑑,𝑙
𝑗,𝑘=0 ∪ {C𝑙+1,𝑙+1,𝑚1

− C𝑙+1,𝑙+1,𝑚2
}.

3.2. Reparameterization using GBCs

The parametric space of the tensor-product GB volume can be regarded as an 𝑛-sided prism  spanning by 𝛀 and 𝚵, that is

 =𝛀⊗ 𝚵.

Due to the parametric domain  is exactly a polyhedron, we would prefer to represent a tensor-product GB volume V(𝑢, 𝑣, 𝑤) via 
using 3D Wachspress coordinates (Warren et al., 2007).

Let {v𝑖}2𝑛𝑖=1 be 2𝑛 vertices of an 𝑛-prism  and 𝛀 the bottom polygonal base with vertices {v𝑖}𝑛𝑖=1. For an arbitrary point (𝑢, 𝑣, 𝑤) ∈
 , {𝜆𝑖}2𝑛𝑖=1 are its Wachspress coordinates of the 2𝑛 vertices. To reproduce the tensor-product GB volume, we now introduce two 
local parameterization systems, which are similar to the local parameterization of the GB patch scheme.

The first is face-distance parameter ℎ, which is defined as

ℎ = 1 −
𝑛∑

𝑖=1
𝜆𝑖. (7)

Another is face parameterization 𝜑, by which point (𝑢, 𝑣, 𝑤) ∈  is mapped to a point (𝑢′, 𝑣′, 𝑤′) ∈𝛀. The face parameterization is 
6

defined as
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Fig. 7. Geometric condition. Left: The control nets of two adjacent 5-prismatic, degree 4 tensor-product GB volumes satisfy Equations (11) and (12). Right: The control 
nets of two adjacent 5-prismatic, degree 5 tensor-product GB volumes satisfy Equations (11), (12), and (14). Middle: Their parametric domains satisfy Equation (13).

Fig. 8. Two 5-prismatic tensor-product GB volumes are smoothly connected. Left: 𝐶1 connection. Right: 𝐶2 connection.

𝜑 ∶  →𝛀, (𝑢′, 𝑣′,𝑤′) =
𝑛∑

𝑖=1
𝜆′𝑖 ⋅ v𝑖, (8)

where 𝜆′
𝑖
= 𝜆𝑖∑𝑛

𝑗=1 𝜆𝑗
. The face-distance parameter ℎ is 0 on the bottom base and 1 on the top base and increases linearly from 0

to 1 between the bottom and top bases. The constant surface of ℎ is exactly parallel to the bottom base (see Fig. 6). The face 
parameterization 𝜑 is exactly a parallel projection that is parallel to the lateral edges. When the parametric domain polyhedron  is 
a right prism with a height of 1 and its base 𝛀 lies in the 𝑧 = 0 plane, we indeed have ℎ =𝑤 and (𝑢′, 𝑣′, 𝑤′) = (𝑢, 𝑣, 0). The process 
of spanning the prism  can be viewed as lofting polygons, while local parameterizations ℎ and 𝜑 act as its inverse transformation, 
resembling a slicing process.

Thus the tensor-product GB volume V(𝑢, 𝑣, 𝑤) can be represented as

V(𝑢, 𝑣,𝑤) =
𝑑∑

𝑚=0
S(𝜑(𝑢, 𝑣,𝑤),𝑚) ⋅𝐵𝑑

𝑚(ℎ(𝑢, 𝑣,𝑤)), (9)

where (𝑢, 𝑣, 𝑤) ∈  .

3.3. Tensor-product GB volume boundary

Now we investigate the boundary behavior of a tensor-product GB volume along its boundary surfaces. First, due to its tensor-
product construction, a tensor-product GB volume behaves along each lateral boundary surface as an ordinary tensor-product Bézier 
volume. Thus a tensor-product GB volume can be easily smoothly connected to adjacent tensor-product Bézier volumes with high-
order geometric continuity (𝐺1 or 𝐺2) along its lateral boundary surfaces.

Especially, we are more interested in its boundary behavior on the bases. It is clear that the basic boundary surfaces are GB 
patches and the corresponding cross-derivatives are vector-valued GB patches. For example, while on the bottom base 𝛀 (𝑤 = 0), we 
7

have that
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V(𝑢, 𝑣,𝑤)|||𝑤=0
= S(𝑢, 𝑣,Δ0 0),

𝜕

𝜕𝑤
V(𝑢, 𝑣,𝑤)

||||𝑤=0
= 𝑑 ⋅ S(𝑢, 𝑣,Δ1 0),

𝜕2

𝜕𝑤2 V(𝑢, 𝑣,𝑤)
||||𝑤=0

= 𝑑(𝑑 − 1) ⋅ S(𝑢, 𝑣,Δ2 0).

(10)

High-order derivatives are similar.

3.4. Geometric conditions for smooth joint

Hence, we can obtain some sufficient geometric conditions for joining two adjacent tensor-product GB volumes smoothly of up 
to second-order parametric or geometric continuity.

Condition 3.1. (𝐶1-condition) Two adjacent 𝑛-prismatic degree 𝑑 tensor-product GB volumes V and V join 𝐶1 if

1. their control nets {𝑚}𝑑𝑚=0 and {𝑚}𝑑𝑚=0 satisfy

 0 =  𝑑 , (11)

Δ1 0 = Δ1 𝑑−1, (12)

2. and the 𝑛-sided polygonal bases 𝛀 and 𝛀 of their parametric domains must be similar, that is

𝛀 ∼𝛀. (13)

Condition 3.2. (𝐶2-condition) Two adjacent 𝑛-prismatic degree 𝑑 tensor-product GB volumes V and V join 𝐶2 if they fulfill Condition 3.1

and their control nets {𝑚}𝑑𝑚=0 and {𝑚}𝑑𝑚=0 additionally satisfy

Δ2 0 = Δ2 𝑑−2. (14)

Condition 3.3. (𝐺1-condition) Two adjacent 𝑛-prismatic degree 𝑑 tensor-product GB volumes V and V join 𝐶1 if

1. their control nets {𝑚}𝑑𝑚=0 and {𝑚}𝑑𝑚=0 satisfy (11) and

Δ1 0 = 𝛼 ⋅Δ1 𝑑−1, 𝛼 > 0, (15)

2. and the 𝑛-sided polygonal bases 𝛀 and 𝛀 of their parametric domains must be similar.

Condition 3.4. (𝐺2-condition) Two adjacent 𝑛-prismatic degree 𝑑 tensor-product GB volumes V and V join 𝐺2 if they fulfill Condition 3.3

and their control nets {𝑚}𝑑𝑚=0 and {𝑚}𝑑𝑚=0 additionally satisfy

Δ2 0 = 𝛼2 ⋅Δ2 𝑑−2 (16)

with the same 𝛼 as in Equation (15).

Fig. 7 illustrates the geometric conditions for 𝐶1 and 𝐶2 joint, while Fig. 8 provides examples of 𝐶1 and 𝐶2 joining. Please note 
that the smoothness conditions we have chosen are rather specific, as we only consider derivatives in one direction.

4. Generalized Bézier volume

Now we consider a volume, called generalized Bézier (GB) volume, with a general topology. An 𝑛-faced degree 𝑑 GB volume is 
defined over an 𝑛-faced simple convex polyhedron  with 𝑛 faces 𝛀1, 𝛀2, … , 𝛀𝑛 and 𝑛𝑣 vertices v1, v2, … , v𝑛𝑣

(see the top of Fig. 9). 
Its control net is an 𝑛-faced degree 𝑑 control net (see the bottom of Fig. 9) which is a natural and straightforward generalization of 
those of degree 𝑑 tensor-product GB volumes.

The construction of a GB volume is also a natural extension of GB patches. A GB patch consists of multiple side-Bézier ribbons 
and each side-Bézier ribbon interpolates one tensor-product Bézier surface boundary. Likewise, a GB volume consists of multiple 
face-Bézier ribbons and each face-Bézier ribbon interpolates one tensor-product GB volume boundary.

4.1. Multi-faced control net and polyhedral domain

As mentioned above, a multi-sided control net consists of multiple overlapping half-Bézier control nets. Similarly, an 𝑛-faced 
8

control net consists of 𝑛 overlapping half tensor-product GB control nets. The bottom left of Fig. 9 shows a 6-faced (345-hexahedral) 
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Fig. 9. A 6-faced degree 4 control net and its corresponding simple convex polyhedral domain. Top left: the simple convex polyhedron  called 345-hexahedron 
(exactly a hexahedron that has two three-sided, two four-sided, and two five-sided faces). Top right: the polygonal faces of  in an exploded view. The vertices of 
each face are oriented consistently in counterclockwise order. Bottom left: the whole multi-faced control net. Bottom right: FLCNs and the central control point in an 
exploded view.

Fig. 10. Explanations about some notation for the polyhedral domain  as shown in Fig. 9. Side or halfedge 𝚪𝑖,𝑎 belongs to 𝛀𝑖 (red face) and is adjacent to 𝛀𝑎 (green 
face). 𝛀𝑏 (yellow face) and 𝛀𝑐 (blue face) are the faces adjacent to the previous (left) and next (right) sides of 𝚪𝑖,𝑎 , respectively.

degree 4 control net. It is seen that the three adjacent half tensor-product GB control nets (see the bottom right of Fig. 9) share 
one common “corner”. This is why we choose a simple convex polyhedron, in which all vertices have three incident faces, as 
the parametric domain. What’s more, the multi-faced control net and the parametric domain polyhedron have a corresponding 
relationship. For example, each polygonal face of the polyhedron is associated with a half tensor-product GB control net by weighted 
Bernstein polynomials (refer to Section 4.4). In addition, the polyhedral domain is regarded as a closed polygonal mesh and represented 
9

via halfedge method (Muller and Preparata, 1978; Weiler, 1985) (see the top right of Fig. 9). Appendix A provides a simple heuristic 
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Fig. 11. Local parameterization along 𝛀𝑖 . Left: the point (𝑢, 𝑣, 𝑤) located on an isosurface of ℎ𝑖 is mapped to the point (𝑢𝑖, 𝑣𝑖, 𝑤𝑖) ∈𝛀𝑖 using 𝜑𝑖 . Right: the prismatic 
domain spanning by (𝑢𝑖, 𝑣𝑖, 𝑤𝑖) ∈𝛀𝑖 and ℎ𝑖 ∈ [0, 1].

domain polyhedron generation algorithm, through which we can construct a simple domain polyhedron from the input multi-faced 
control net.

4.2. Local control net of a face-Bézier ribbon

Similarly, local control nets of an 𝑛-faced degree 𝑑 control net indicate these half tensor-product GB control nets. For the sake of 
convenience, we use SLCNs to refer to side local control nets and FLCNs to refer to face local control nets. Two adjacent FLCNs share 
(𝑑 + 1) ⋅ (𝑙 + 1)2 control points, which are exactly the tensor product of 𝑙 + 1 SLCNs. Three adjacent FLCNs share (𝑙 + 1)3 common 
control points. Remark, there also exists one central control point C𝑙+1,𝑙+1,𝑙+1 besides all FLCNs when 𝑑 is even.

We adopt a method that is similar to halfedges to encode the control points of FLCNs. The FLCN of the 𝑖-th face-Bézier ribbon 
(also the 𝑖-th polygonal face 𝛀𝑖) is denoted by { 𝑖

𝑚}
𝑙
𝑚=0 where  𝑖

𝑚 is the 𝑚-th layer control net. Each  𝑖
𝑚 consists of 𝑛𝑖

SLCNs (and one additional central point C𝑖
𝑙+1,𝑙+1,𝑚 when 𝑑 is even) while 𝛀𝑖 has 𝑛𝑖 vertices. Each SLCN of  𝑖

𝑚 is represented by 
{C

𝑖,𝑎
𝑗,𝑘,𝑚

}𝑑,𝑙
𝑗,𝑘=0, where the first superscript 𝑖 indicates that the SLCN belongs to the 𝑖-th FLCN, and the second superscript 𝑎 indicates 

that it is “adjacent” to the 𝑎-th FLCN. Moreover, its corresponding side or halfedge 𝚪𝑖,𝑎 ∶= (v𝑠, v𝑒) (assuming its starting and ending 
vertices are v𝑠 and v𝑒, respectively) belongs to 𝛀𝑖 and is adjacent to 𝛀𝑎 (see Fig. 10).

4.3. Local parameterization

In the GB patch scheme, a polygon is reparameterized into a rectangle using local parameterization, which serves as a parametric 
domain of a tensor-product Bézier patch. Similarly, a polyhedron can be reparameterized into a prism using local parameterization 
mentioned above (Equation (7) and (8)), which serves as a parametric domain of a tensor-product GB volume. Hence, for each face, 
we define two local parameterization systems.

For an arbitrary point (𝑢, 𝑣, 𝑤) ∈  , 𝜆1, 𝜆2, … , 𝜆𝑛𝑣
are its 3D Wachspress coordinates of the 𝑛𝑣 vertices.3 Then for each face we 

define the face-distance parameter ℎ𝑖 as

ℎ𝑖 = 1 −
∑

v𝑡∈𝛀𝑖

𝜆𝑡. (17)

And the face parameterization 𝜑𝑖 is defined as

𝜑𝑖 ∶  →𝛀𝑖, (𝑢𝑖, 𝑣𝑖,𝑤𝑖) =
∑

v𝑡∈𝛀𝑖

𝜆𝑖,𝑡 ⋅ v𝑡, (18)

where

𝜆𝑖,𝑡 =
𝜆𝑡∑

v𝑗∈𝛀𝑖
𝜆𝑗

. (19)

By 𝜑𝑖 a point (𝑢, 𝑣, 𝑤) ∈  is mapped to a point (𝑢𝑖, 𝑣𝑖, 𝑤𝑖) ∈𝛀𝑖 (see Fig. 11, 12). Remark, when the point (𝑢, 𝑣, 𝑤) lies on the distant 
faces, Equation (19) is not defined due to the denominator being 0. However, this does not matter because the corresponding blend 
will vanish (see Section 4.7).

Then we can obtain the side and distance parameters of each side of 𝛀𝑖. For example, for a side 𝚪𝑖,𝑎, the side and distance 
parameters, denoted by 𝑠𝑖,𝑎 and ℎ𝑖,𝑎, are obtained
10

3 Coincidentally, the original 3D Wachspress coordinates were also defined over simple convex polyhedra (Floater, 2015; Warren et al., 2007).
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Fig. 12. Isosurfaces of local parameterizations over the polyhedral domain  as shown in Fig. 9. Top left: isosurfaces of ℎ𝑖 . Top right: Isosurfaces of 𝜑𝑖 . Bottom: the 
isosurface of ℎ𝑖 = 0.6 is mapped the quadrilateral face 𝛀𝑖 by 𝜑𝑖 .

Fig. 13. Distribution of weighting functions for the 𝑖-th FLCN of the 6-faced degree 4 grid as shown in Fig. 9. Left: the 𝑖-th FLCN (red points locating at red frames). 
Middle left: control points shared by the 𝑖-th and 𝑎-th FLCNs (green points locating at red frames) with weighting function 𝛾𝑖,𝑎. Middle right: control points shared 
by the 𝑖-th and 𝑏-th FLCNs (yellow points locating at red frames) with weighting function 𝛾𝑖,𝑏 . Ringht: control points shared by the 𝑖-th and 𝑐-th FLCNs (blue points 
locating at red frames) with weighting function 𝛾𝑖,𝑐 .

𝑠𝑖,𝑎 =
𝜆′
𝑖,𝑒

𝜆′
𝑖,𝑠

+ 𝜆′
𝑖,𝑒

, ℎ𝑖,𝑎 = 1 − (𝜆′𝑖,𝑠 + 𝜆′𝑖,𝑒), (20)

where {𝜆′
𝑖,𝑡
| v𝑡 ∈𝛀𝑖} are 2D Wachspress coordinates of the point (𝑢𝑖, 𝑣𝑖, 𝑤𝑖) with respect to the 𝑛𝑖 vertices of 𝛀𝑖.

4.4. Weighted Bernstein polynomials

For each control point C𝑖,𝑎
𝑗,𝑘,𝑚

, a weighted Bernstein polynomial 𝛾𝑖,𝑎𝜇
𝑖,𝑎
𝑗,𝑘,𝑚

𝐵𝑑
𝑗,𝑘,𝑚

(𝑠𝑖,𝑎, ℎ𝑖,𝑎, ℎ𝑖) is defined as the blending function, 
11

which is similar to the GB patch scheme. The weighting function 𝜇𝑖,𝑎
𝑗,𝑘,𝑚

is defined the same way as Equation (2)
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Fig. 14. Some weighting functions of the polyhedral domain  as shown in Fig. 9. Left: the weighting function 𝛾𝑖,𝑏 . Right: the weighting function 𝛾𝑖,𝑐 .

𝜇𝑖,𝑎
𝑗,𝑘,𝑚

=

⎧⎪⎪⎨⎪⎪⎩

𝛼𝑖,𝑎 =
ℎ3
𝑖,𝑏

ℎ3
𝑖,𝑏
+ℎ3

𝑖,𝑎

, 0 ≤ 𝑗 ≤ 𝑙,

𝛽𝑖,𝑎 =
ℎ3
𝑖,𝑐

ℎ3
𝑖,𝑐
+ℎ3

𝑖,𝑎

, 𝑑 − 𝑙 ≤ 𝑗 ≤ 𝑑,

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(21)

where 𝚪𝑖,𝑏 and 𝚪𝑖,𝑐 are the previous and next sides of 𝚪𝑖,𝑎 (see Fig. 10), respectively. And 𝛾𝑖,𝑎 is defined as

𝛾𝑖,𝑎 =
ℎ3
𝑎

ℎ3
𝑎 + ℎ3

𝑖

. (22)

Fig. 13 and 14 show the distributions and performances of some weighting functions 𝛾𝑖,∗-s. As for the central point C𝑖
𝑙+1,𝑙+1,𝑚 of  𝑖

𝑚

(when 𝑑 is even), the blending function is

𝑖
𝑙+1,𝑙+1,𝑚 = 1

𝑛𝑖

∑
𝛀𝑎↿⇂𝛀𝑖

𝐵𝑑
𝑙+1,𝑙+1,𝑚(𝑠𝑖,𝑎, ℎ𝑖,𝑎, ℎ𝑖)

= 1
𝑛𝑖

∑
𝛀𝑎↿⇂𝛀𝑖

𝐵𝑑
𝑙+1,𝑙+1(𝑠𝑖,𝑎, ℎ𝑖,𝑎) ⋅𝐵𝑑

𝑚(ℎ𝑖)

=𝑖
𝑙+1,𝑙+1 ⋅𝐵

𝑑
𝑚(ℎ𝑖),

where the notation ↿⇂ indicates the two faces are adjacent. And the blending function for the central point C𝑙+1,𝑙+1,𝑙+1 of the 𝑛-faced 
control net is

𝑙+1,𝑙+1,𝑙+1 =
1
𝑛

𝑛∑
𝑖=1

1
𝑛𝑖

∑
𝛀𝑎↿⇂𝛀𝑖

𝐵𝑑
𝑙+1,𝑙+1,𝑙+1(𝑠𝑖,𝑎, ℎ𝑖,𝑎, ℎ𝑖).

Fig. 16 shows some blending functions over the polyhedral domain.

4.5. Face-Bézier ribbons

Combining these control points and the corresponding blending functions the face-Bézier ribbon 𝑖 can be obtained:

𝑖 =
∑

𝛀𝑎↿⇂𝛀𝑖

𝑑∑
𝑗=0

𝑙∑
𝑘=0

𝑙∑
𝑚=0

C
𝑖,𝑎
𝑗,𝑘,𝑚

⋅ 𝛾𝑖,𝑎𝜇
𝑖,𝑎
𝑗,𝑘,𝑚

𝐵𝑑
𝑗,𝑘,𝑚

(𝑠𝑖,𝑎, ℎ𝑖,𝑎, ℎ𝑖)

+
𝑙∑

𝑚=0
C𝑖
𝑙+1,𝑙+1,𝑚 ⋅𝑖

𝑙+1,𝑙+1,𝑚.

(23)

Let R𝑖,𝑎
𝑚 be a side-Bézier ribbon. That is

R𝑖,𝑎
𝑚 =

𝑑∑
𝑗=0

𝑙∑
𝑘=0

C
𝑖,𝑎
𝑗,𝑘,𝑚

⋅ 𝜇𝑖,𝑎
𝑗,𝑘,𝑚

𝐵𝑑
𝑗,𝑘
(𝑠𝑖,𝑎, ℎ𝑖,𝑎). (24)
12

Then 𝑖 can be represented as
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Fig. 15. Some control points on the 6-faced degree 4 grid as shown in Fig. 9. Red point: a corner point lying on a three- (𝑐-th), a four- (𝑖-th), and a five-sided (𝑎-th) 
FLCN and also six SLCNs. Green point: an edge point lying on two FLCNs (𝑖-th and 𝑎-th) and also two SLCNs. Blue point: the central point C𝑖

2,2,0 of  𝑖

0 . Black point: 
the central point C2,2,2 .

Fig. 16. Blending functions for some control points as shown in Fig. 15. Top left: the blending function for the corner point is the sum of 𝛾𝑖,𝑐 �̊�𝑖,𝑐

0,0,0𝐵
4
0,0,0(ℎ𝑖,𝑎, ℎ𝑖,𝑐 , ℎ𝑖), 

𝛾𝑖,𝑎�̊�
𝑖,𝑎

4,0,0𝐵
4
4,0,0(ℎ𝑖,𝑏, ℎ𝑖,𝑎, ℎ𝑖), 𝛾𝑎,𝑖𝜇𝑎,𝑖

0,0,0𝐵
4
0,0,0(𝑠𝑎,𝑖, ℎ𝑎,𝑖, ℎ𝑖), 𝛾𝑎,𝑐𝜇𝑎,𝑐

4,0,0𝐵
4
4,0,0(𝑠𝑎,𝑐 , ℎ𝑎,𝑐 , ℎ𝑖), 𝛾𝑐,𝑎𝜇𝑐,𝑎

0,0,0𝐵
4
0,0,0(𝑠𝑐,𝑎, ℎ𝑐,𝑎, ℎ𝑖), and 𝛾𝑐,𝑖𝜇𝑐,𝑖

4,0,0𝐵
4
4,0,0(𝑠𝑐,𝑖, ℎ𝑐,𝑖, ℎ𝑖). Top right: the blending func-

tion for the edge point is the sum of 𝛾𝑖,𝑎�̊�𝑖,𝑎

2,0,0𝐵
4
2,0,0(ℎ𝑖,𝑏, ℎ𝑖,𝑎, ℎ𝑖) and 𝛾𝑎,𝑖𝜇𝑎,𝑖

2,0,0𝐵
4
2,0,0(𝑠𝑎,𝑖, ℎ𝑎,𝑖, ℎ𝑖). Bottom left: the blending function ̊𝑖

2,2,0 for the point C𝑖
2,2,0 (intersection 

view). Bottom right: the blending function 2,2,2 for the central point (intersection view). As for the alternative weighting function such as �̊�𝑖,𝑐

0,0,0 , please refer to 
Section 4.8.

𝑖 =
𝑙∑

𝑚=0
𝐵𝑑

𝑚(ℎ𝑖)[
∑

𝛀𝑎↿⇂𝛀𝑖

𝛾𝑖,𝑎R𝑖,𝑎
𝑚 + C𝑖

𝑙+1,𝑙+1,𝑚 ⋅𝑖
𝑙+1,𝑙+1], (25)

Remark, the central control point C𝑖
𝑙+1,𝑙+1,𝑚 only exists when degree 𝑑 is even.

The construction of face-Bézier ribbons is a straightforward generalization of side-Bézier ribbons. A side-Bézier ribbon is a partial 
tensor-product Bézier patch in which weighting functions are assigned at the left and right corners. Likewise, a face-Bézier ribbon is 
a partial tensor-product GB volume in which weighting functions are assigned at the different sides. A side-Bézier ribbon interpolates 
a tensor-product Bézier patch boundary determined by its SLCN. A face-Bézier ribbon also interpolates a tensor-product GB volume 
13

boundary determined by its FLCN.
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Fig. 17. Editing a GB volume. Top: the GB volumes with control nets. Bottom: isosurfaces of GB volumes. From left to right: the original GB volume; moving a corner 
control point; moving an edge point; moving a face point.

4.6. The volume equation

Now we are ready to formulate the equation of the GB volume. An 𝑛-faced degree 𝑑 GB volume V(𝑢, 𝑣, 𝑤) is defined as

V(𝑢, 𝑣,𝑤) = 1
𝐵∑ [

𝑛∑
𝑖=1

𝑖 + C𝑙+1,𝑙+1,𝑙+1 ⋅𝑙+1,𝑙+1,𝑙+1], (26)

where 𝐵∑ is the sum of all blending functions and C𝑙+1,𝑙+1,𝑙+1 only exists when degree 𝑑 is even.

4.7. Boundary behavior

A GB volume behaves like a tensor-product GB volume on the boundary surface. This conclusion can be easily reached because 
the construction of GB volumes is a direct extension of the construction of GB patches. Here we provide a simple and intuitive 
explanation.

Firstly, it is clear that the 𝑖-th face-Bézier ribbon 𝑖 does not affect the distant faces 𝛀𝑑 (𝛀𝑑 ∉ {𝛀𝑎 | 𝛀𝑎 ↿⇂𝛀𝑖} and 𝛀𝑑 ≠𝛀𝑖). 
This is because the face-distance parameter ℎ𝑖 = 1 on the distant faces and all the blending functions of 𝑖 contain a (1 −ℎ𝑖)𝑑−𝑚 term. 
Thus, 𝑖 does not affect distant faces, either in terms of position or differential properties.

Secondly, with the face parameterization 𝜑𝑖, all points on adjacent faces are mapped to the corresponding sides of 𝛀𝑖. For 
example, all points on the adjacent face 𝛀𝑎 will be mapped to the corresponding side 𝚪𝑖,𝑎. Thus we can see that only the term ∑𝑙

𝑚=0 𝛾𝑖,𝑎R𝑖,𝑎
𝑚 of 𝑖 contributes to the adjacent face 𝛀𝑎.

In addition, 𝛾𝑖,𝑎 and its up to second-order derivatives vanish on the adjacent face 𝛀𝑎 since that 𝛾𝑖,𝑎 contains a term ℎ3
𝑎 and ℎ𝑎 ≡ 0

on 𝛀𝑎. Thus, only the 𝑖-th face-Bézier ribbon 𝑖 affects the 𝑖-th face 𝛀𝑖.
Then we consider the performance of 𝑖 on the 𝑖-th face 𝛀𝑖. It can be easily seen that 𝛾𝑖,𝑎 = 1 and 𝜕(𝛾𝑖,𝑎) = 𝜕2(𝛾𝑖,𝑎) = 0 on 𝛀𝑖. By 

the observation, we can conclude that (assuming degree 𝑑 ≥ 5)

𝑖|||𝛀𝑖

=
∑

𝛀𝑎↿⇂𝛀𝑖

R
𝑖,𝑎

0
|||𝛀𝑖

+ C𝑖
𝑙+1,𝑙+1,0 ⋅

𝑖
𝑙+1,𝑙+1

|||𝛀𝑖

,

𝜕(𝑖)|||𝛀𝑖

=
1∑

𝑚=0
𝜕[𝐵𝑑

𝑚(ℎ𝑖)(
∑

𝛀𝑎↿⇂𝛀𝑖

R𝑖,𝑎
𝑚 + C𝑖

𝑙+1,𝑙+1,𝑚 ⋅𝑖
𝑙+1,𝑙+1)]

|||𝛀𝑖

,

𝜕2(𝑖)|||𝛀𝑖

=
2∑

𝑚=0
𝜕2[𝐵𝑑

𝑚(ℎ𝑖)(
∑

𝛀𝑎↿⇂𝛀𝑖

R𝑖,𝑎
𝑚 + C𝑖

𝑙+1,𝑙+1,𝑚 ⋅𝑖
𝑙+1,𝑙+1)]

|||𝛀𝑖

,

(27)

where the right term(s) only exists when degree 𝑑 is even.

While this may still be some distance away from the conclusion we desire, it is not far off. It is clearly that 𝜕𝑝(𝑖)|||𝛀𝑖

differs 

𝜕𝑝V
|||𝛀𝑖

by only one denominator, 𝐵∑ (for 𝑝 = 0, 1, 2). Notably, 𝐵∑ is exactly the sum of all blending functions of 𝑖 on face 𝛀𝑖. 
14

Thus, the final GB volume V(𝑢, 𝑣, 𝑤) will become a tensor-product GB volume on 𝛀𝑖.
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Fig. 18. Parametric and physical domains. Left: a 345-hexahedron with three adjacent prisms. Right: the corresponding degree 5 GB volumes with control nets.

Fig. 19. Isosurfaces. A 345-hexahedral GB volume is assembled with a tensor-product Bézier, a 3-prismatic tensor-product GB, and a 5-prismatic tensor-product GB 
volume. From left to right: 𝐺0 connection; 𝐺1 connection; and 𝐺2 connection. From top to bottom: front view; back view; and left view.

In conclusion, the above provides sufficient evidence that the GB volume possesses tensor-product GB volume boundaries. For 
instance, on the 𝑖-th face 𝛀𝑖, the GB volume behaves like a tensor-product GB volume that shares the same three layers of control 
points { 𝑖

𝑚}
2
𝑚=0, and whose polygonal base 𝛀 is similar to 𝛀𝑖. Thus GB volumes can be smoothly connected to other GB volumes 

or tensor-product GB volumes with geometric continuity by using Condition 3.1, Condition 3.2, Condition 3.3, or Condition 3.4.

4.8. Adjustment to a 4-sided face-Bézier ribbon

Although the GB volume possesses tensor-product GB volume boundaries, a 4-prismatic tensor-product GB volume is usually not 
a tensor-product Bézier volume. This is because a 4-sided GB patch cannot be a tensor-product Bézier patch unless its parametric 
domain is a parallelogram. However, we desire a GB volume to have a tensor-product Bézier volume boundary if the corresponding 
15

polygonal face of the parametric polyhedron is an arbitrary quadrilateral.
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Therefore, we need to make some adjustments to the weighted Bernstein polynomials of a 4-sided face-Bézier ribbon. That is, for 
each control point C𝑖,𝑎

𝑗,𝑘,𝑚
of a 4-sided face-Bézier ribbon, an alternative weighted Bernstein polynomial 𝛾𝑖,𝑎�̊�

𝑖,𝑎
𝑗,𝑘,𝑚

𝐵𝑑
𝑗,𝑘,𝑚

(ℎ𝑖,𝑏, ℎ𝑖,𝑎, ℎ𝑖) is 
defined as the blending function. Please note that the original trivariate Bernstein basis function 𝐵𝑑

𝑗,𝑘,𝑚
(𝑠𝑖,𝑎, ℎ𝑖,𝑎, ℎ𝑖) has been replaced 

by 𝐵𝑑
𝑗,𝑘,𝑚

(ℎ𝑖,𝑏, ℎ𝑖,𝑎, ℎ𝑖), which is somewhat similar to the Overlap GB patch (Salvi, 2022). The weighting function �̊�𝑖,𝑎
𝑗,𝑘,𝑚

is defined as

�̊�𝑖,𝑎
𝑗,𝑘,𝑚

=
⎧⎪⎨⎪⎩

1
2 𝛾𝑖,𝑏, 0 ≤ 𝑗 ≤ 𝑙,
1
2 𝛾𝑖,𝑐 , 𝑑 − 𝑙 ≤ 𝑗 ≤ 𝑑,

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(28)

Similarly, the blending functions for the central point C𝑖
𝑙+1,𝑙+1,𝑚 of  𝑖

𝑚 (when 𝑑 is even) is

̊𝑖
𝑙+1,𝑙+1,𝑚 = 1

4
∑

𝛀𝑎↿⇂𝛀𝑖

𝐵𝑑
𝑙+1,𝑙+1,𝑚(ℎ𝑖,𝑏, ℎ𝑖,𝑎, ℎ𝑖).

And the blending function for the central point C𝑙+1,𝑙+1,𝑙+1 of the 𝑛-faced control net is

𝑙+1,𝑙+1,𝑙+1 =
1
𝑛
[
∑
𝑛𝑖≠4

1
𝑛𝑖

∑
𝛀𝑎↿⇂𝛀𝑖

𝐵𝑑
𝑙+1,𝑙+1,𝑙+1(𝑠𝑖,𝑎, ℎ𝑖,𝑎, ℎ𝑖)

+
∑
𝑛𝑖=4

1
4

∑
𝛀𝑎↿⇂𝛀𝑖

𝐵𝑑
𝑙+1,𝑙+1,𝑙+1(ℎ𝑖,𝑏, ℎ𝑖,𝑎, ℎ𝑖)].

Through this adjustment, not only does the boundary of the GB volume on the quadrilateral faces become a tensor-product Bézier 
volume boundary, but also when the parametric polyhedron degenerates into a prism, the GB volume also degenerates into a tensor-product 
GB volume. Hence, when a GB volume is joined along a quadrilateral face with other volumes, only the relationships between control 
points need to be considered, without the need to consider the shape of the corresponding quadrilateral faces in the parametric 
domain. Thus GB volumes can be easily integrated into existing workflows for constructing and manipulating tensor-product Bézier 
volumes.

5. Examples

In this section, some examples are presented to show the features of GB volumes. For visualization purposes, each control point 
of the GB volumes in the examples consists of four components, namely, coordinate values (𝑥, 𝑦, 𝑧) and an attribute value 𝑔, where 
the attribute value is randomly assigned. Furthermore, when two volumes are joined together, their control points, which are four-
dimensional (i.e., (𝑥, 𝑦, 𝑧, 𝑔)), should satisfy the corresponding geometric conditions. The generation of isoparametric surfaces on the 
volumes is based on the attribute value 𝑔 for rendering.

5.1. Editing

Fig. 17 illustrates the process of editing a 345-hexahedral degree 4 GB volume. Just like Bézier curves and surfaces, we can easily 
modify the shape of GB volumes by moving their control points. In addition, from the figure, we can also observe that GB volumes 
exhibit a certain degree of locality. Therefore, GB volumes are relatively easy to design in terms of shape.

5.2. Smooth joining

Fig. 19 and 20 illustrate the integration of a 345-hexahedral degree 5 GB volume with surrounding tensor-product volumes. A 
345-hexahedral GB volume is joined with a tensor-product Bézier, a 3-prismatic tensor-product GB, and a 5-prismatic tensor-product 
GB volume around a corner. Their parametric domains are shown in Fig. 18. The cases of 𝐺0, 𝐺1 and 𝐺2 joining have all been 
demonstrated. Here we utilized the Condition 3.3 and Condition 3.4 with 𝛼 = 0.5. Fig. 19 shows the isosurfaces inside these 
volumes and Fig. 20 the details of partial isosurfaces. From the isosurfaces, it is evident that the GB volume can be smoothly joined 
with surrounding tensor-product volumes with a certain degree of continuity.

In Fig. 21, we present two simple examples: a tetrahedral and a dodecahedral GB volume. Both the two GB volumes are smoothly 
connected with adjacent tensor-product GB volumes with 𝐺2 continuity.

5.3. Complex volumetric models

Here we will present some complex volumetric models solved with tensor-product GB and GB volumes. All these volumetric 
models have a global 𝐺1 continuity. For more details about the construction of control nets please refer to Appendix B. To represent 
polyhedral meshes, we utilized the half-face data structure proposed by Kremer et al. (2013).

Fig. 22 shows a volumetric model that is controlled by a simple input polyhedral mesh comprising a 345-hexahedron and a 
16

tetrahedron. The final smooth volumetric model consists of 38 tensor-product Bézier, 9 tensor-product GB and 2 GB volumes. Fig. 23
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Fig. 20. Partial isosurfaces in Fig. 19. The isosurfaces which take the same value of 𝑔 and belong to different volumes are colored differently. From left to right: 𝐺0

connection; 𝐺1 connection; and 𝐺2 connection. From top to bottom: isosurfaces inside volumes; close-up of shaded isosurfaces; and isophotes on the isosurfaces.

Fig. 21. 𝐺2 connection. Top: a tetrahedral GB volume is surrounded by four 3-prismatic tensor-product GB volumes. Bottom: a dodecahedral GB volume is surrounded 
17

by twelve 5-prismatic tensor-product GB volumes. Left: GB volumes. Right: interior view of isosurfaces.
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Fig. 22. 345-hexahedron & tetrahedron. Top left: input polyhedral mesh. Bottom left: refined mesh with red internal irregular points and yellow internal irregular 
edges (by applying Catmull–Clark volumetric subdivision twice). Top middle left: volumetric model with holes (consisting of tensor-product Bézier volumes). Bottom 
middle left: contours in a slice plane of the volumetric model with holes. Top middle right: irregular regions (consisting of tensor-product GB and GB volumes). 
Bottom middle right: contours in a slice plane of the irregular regions. Top right: hole-filled volumetric model. Bottom right: contours in a slice plane of the hole-filled 
volumetric model.

Fig. 23. Cube-Sphere. Top left: input hexmesh. Bottom left: refined mesh with red internal irregular points and yellow internal irregular edges (by applying Catmull–
Clark volumetric subdivision twice). Top middle left: volumetric model with holes (consisting of tensor-product Bézier volumes). Bottom middle left: contours in a 
slice plane of the volumetric model with holes. Top middle right: irregular regions (consisting of tensor-product GB and GB volumes). Bottom middle right: contours 
in a slice plane of the irregular regions. Top right: hole-filled volumetric model. Bottom right: contours in a slice plane of the hole-filled volumetric model.

illustrates a commonly used test model — the input is a hexmesh consisting of a cube and six square frustums surrounding it. The 
final smooth sphere-like model consists of 351 tensor-product Bézier, 60 tensor-product GB, and 8 GB volumes.

Fig. 24 shows a volumetric model Rabbit which has 1232 tensor-product Bézier, 287 tensor-product GB, and 347 GB volumes. The 
input is a pure hexmesh. Fig. 25 illustrates a more general scenario. The input is a triangular mesh Lego which has 14849 vertices 
18

and 10744 triangles. We first transformed it into a hexmesh by the CE-PolyCubeMap algorithm proposed by Guo et al. (2020). Other 
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Fig. 24. Rabbit. From left to right in the top row: input hexmesh with irregularities (red internal irregular points and yellow internal irregular edges); volumetric 
model with holes (consisting of tensor-product Bézier volumes); and hole-filled volumetric model. From left to right in the bottom row: volumetric model with holes 
— volume rendering; hole-filled volumetric model — volume rendering; and contours in a slice plane of the hole-filled volumetric model.

Fig. 25. Lego. From left to right in the first row: input triangular mesh; generated hexmesh with irregularities; final volumetric model; and isosurface with the 
median value of 𝑔. From left to right in the second row: input triangular mesh — back view; irregular regions (consisting of tensor-product GB and GB volumes); 
final volumetric model — back view; and isosurface with the median value of 𝑔 — back view. From left to right in the third row: volumetric model with holes and 
19

hole-filled volumetric model (volume rendering).
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Fig. 26. Practical CAD models. All the data used in this figure are from Guo et al. (2020).

hexmesh generation algorithms such as CUBECOVER (Nieser et al., 2011) can also be adopted. The final smooth volumetric model 
consists of 11460 tensor-product Bézier, 560 tensor-product GB, and 40 GB volumes. More practical CAD models are shown in Fig. 26.

6. Discussion

In this section, we will discuss the limitations of the GB volume and outline potential areas for future research.
Local parameterization. There is an issue that needs to be addressed, and that is the effectiveness of local parameterization. As 

mentioned above, the isosurfaces of ℎ𝑖 are mapped to the polygonal face by 𝜑𝑖 (cf. Fig. 11). However, we are not yet certain if this 
process is injective. For example, we are unsure if there could be a scenario where two points on the isosurface (ℎ𝑖 < 1) map to the 
same point on the polygonal face after local parameterization. Based on our experience, the local parameterization appears to be 
injective, but it still needs to be theoretically proven. In addition, the side parameterization of GB patch scheme (𝑠𝑖, cf. Equation (1)
and Fig. 4) is a radial sweeping parameterization, which seems to have first appeared in Charrot and Gregory’s pentagonal surface 
construction (Charrot and Gregory, 1984), that all isolines of 𝑠𝑖 are straight lines. And we wonder if our face parameterization 𝜑𝑖

has the similar property that the isosurfaces of 𝜑𝑖 are ruled surfaces. To address these issues, a profound understanding of the 3D 
generalized barycentric coordinates might be necessary.

Extensions. Although we have provided geometric conditions for smooth joining between GB volumes, similar to the conditions 
for joining tensor-product Bézier volumes, achieving a smooth connection between volumes in complicated geometric modeling 
can be challenging. In 2018, Salvi and Várady (2018) extended their GB patch scheme so that the input side-Bézier ribbons can be 
independent. For example, the adjacent ribbons can have different degrees. We believe that this technique is also suitable for the GB 
volume and by using independent face-Bézier ribbons smooth joining between volumes may be easier. Moreover, independent ribbons 
are highly likely to lead to twist incompatibility and how the twist will influence the shape of a volume is still a terra incognita. 
Additionally, since the shapes of GB volumes are directly influenced by the polyhedral parametric domains, constructing suitable 
assembled polyhedral parametric domains is also an important task. Another valuable work is the extension of GB volumes to B-
spline. As mentioned above, irregularities over unstructured hexahedral meshes are very difficult to deal with. GB patches have been 
extended to B-spline to handle the irregularities over unstructured quadrilateral meshes (Hettinga and Kosinka, 2020). Therefore, 
extending GB volumes to B-spline to handle the irregularities over unstructured hexahedral meshes is also feasible. Although the 
topology of a GB volume is currently limited to a simple convex polyhedron, we firmly believe that this restriction can be lifted in 
the future, just as the GB patch was extended from a convex polygonal domain to an arbitrary domain (Várady and Salvi, 2020). 
Therefore, generalized barycentric coordinates that can be defined over concave polyhedra, such as mean value coordinates (Floater 
et al., 2005), harmonic coordinates (Joshi et al., 2007), and maximum likelihood coordinates (Chang et al., 2023), need to be utilized.

How to use? Most people might be more interested in applications of GB volumes and this is also what we are concerned about. 
Nevertheless, our work has not delved into such depths yet. Two possible applications of the GB volume may be as volumetric 
parameterization in IGA and as shape functions in FEA, but constructing analysis-suitable GB volumes may be not easy work. This is 
because we use generalized barycentric coordinates as parameters, resulting in the composite function having a potential relatively 
high rational degree. Therefore, whether it is computing its derivatives or integrals, or converting it into NURBS representation, 
20

it is all very challenging. The same issue also arises in those polygonal surfaces that use generalized barycentric coordinates as 
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parameters (Peters, 2019). It is worth mentioning that recently, Wang et al. (2023) successfully applied GB patches in IGA, which 
serves as an inspiring reference for future work. In 2016, Massarwi and Elber (2016) proposed a volumetric modeling framework 
based on trimmed B-spline. They suggest designing or modeling a 3D object by using volumetric cells which are trimmed B-spline 
trivariates. We are wondering if the GB volume can also be used for the same task. In addition, GB volumes have the potential to 
be applied in microstructure design. A microstructure model is typically composed of multiple cells stacked together with the same 
shape. Most microstructure cells are irregular in shape. Thus, using polyhedral GB volumes to represent microstructure cells seems 
to be a good fit.

7. Conclusion

We have introduced the GB volume, a novel polyhedral volumetric representation, which is a natural generalization of the GB 
patch from 2D manifold to 3D manifold. A GB volume is defined over a simple convex polyhedral domain by using 3D Wachspress 
coordinates, with a multi-faced (polyhedral) control net. It possesses tensor-product borders that its boundary surfaces are GB patches 
and corresponding cross-derivatives vector-valued GB patches. Thus GB volumes connect to adjacent tensor-product Bézier/GB vol-
umes with 𝐺1 or 𝐺2 continuity by using some simple and intuitive geometric conditions. When the parametric polyhedron becomes 
a prism, the GB volume also becomes a tensor-product GB volume.

Also, we have to point out that our work is still in an exploratory phase and is at a preliminary stage. There are still many issues 
here, both theoretically and in terms of application, that await resolution in the future.
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Appendix A. Domain generation

Given a general polyhedral Bézier control net, a domain polyhedron can be created heuristically by following these steps (see 
Fig. A.27).

1. Initialization. First, we can obtain an initial polyhedron  ′ by setting the corner points on the polyhedral Bézier control net 
as the polyhedron vertices {v′

𝑖
}. The initial polyhedron  ′ could be invalid because not all of the vertices belonging to each 

polygon are necessarily planar.
2. Fitting planes. For each polygon 𝛀′

𝑗 of  ′, with 𝑘 vertices {v′
𝑗𝑖
}𝑘
𝑖=1, a plane 𝑛𝑗 ⋅ (𝑥 − 𝑥𝑗 , 𝑦 − 𝑦𝑗 , 𝑧 − 𝑧𝑗 ) = 0 can be defined, where 

(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 ) =
∑𝑘

𝑖=0 v′
𝑗𝑖

𝑘
the centroid c′

𝑗
of 𝛀′

𝑗 and 𝑛𝑗 a normal vector of the plane. 𝑛𝑗 =
∑𝑘

𝑖=1 𝑛𝑗𝑖
𝑘

where 𝑛𝑗𝑖 is the unit normal of 
△(v′

𝑗𝑖
, v′

𝑗(𝑖+1)%𝑘
, c′

𝑗
).

3. Vertices generation. Then the domain polyhedron  is naturally defined by these planes. Each vertex v𝑖 can be obtained by 
solving a linear system

⎧⎪⎨⎪⎩

𝑛𝑎 ⋅ (𝑥− 𝑥𝑎, 𝑦− 𝑦𝑎, 𝑧− 𝑧𝑎) = 0
𝑛𝑏 ⋅ (𝑥− 𝑥𝑏, 𝑦− 𝑦𝑏, 𝑧− 𝑧𝑏) = 0
𝑛𝑐 ⋅ (𝑥− 𝑥𝑐, 𝑦− 𝑦𝑐, 𝑧− 𝑧𝑐) = 0

,

21

where 𝛀𝑎, 𝛀𝑏 and 𝛀𝑐 are three incident faces of v𝑖.
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Fig. A.27. Domain generation process.

Fig. B.28. Construct Bézier control nets from quadmeshes. Solid black wireframe: input quadmesh . Dashed black wireframe: refined mesh ′. Left: Quadratic 
Bézier control nets in Zheng et al. (2005) (gray wireframe). Right: Degree elevated polygonal cubic Bézier control net (yellow wireframe).

We should mention that, in certain extreme cases, the vertices we obtain may not precisely form a convex polyhedron, causing our 
algorithm to fail. Additionally, previous work (Várady and Salvi, 2020) on polygonal surfaces suggests that the generated domain 
polygon should closely mimic the input boundary to minimize parameterization distortion. Nevertheless, our domain polyhedron 
generation algorithm relies solely on the information of corner points, which may result in the generated domain polyhedron not 
closely mimicking the input configuration.

Appendix B. Polyhedral Bézier extraction

Here we provide an effective algorithm for polyhedral Bézier control nets construction from input hexmeshes or simple-convex-
polyhedral meshes, which is a generalization of the patch generation algorithm proposed by Zheng et al. (2005).

First, let us review the patch generation algorithm in Zheng et al. (2005). Given a 2-manifold quadmesh  with internal vertices 
{v𝑖}, a new refined mesh ′ can be created by carrying out midpoint subdivision once. If the input 2-manifold mesh includes 
polygonal faces, first applying Catmull–Clark subdivision once or more times will cause all polygonal faces to disappear. Obviously, 
vertices {v𝑖} also lie on the refined mesh ′. Each internal vertex v𝑖 and its 1-ring neighboring vertices in ′ form a quadratic 
Bézier control net then adjacent quadratic Bézier control nets naturally satisfy 𝐶1 condition (see the left of Fig. B.28). Zheng et al. 
construct a Zheng–Ball patch for each irregular vertex and a tensor-product Bézier patch for each regular vertex.4

But these quadratic polygonal Bézier control nets are not what we desire. Because for GB patches to satisfy the 𝐺1 condition, each 
side requires at least two layers of control points, meaning at least cubic grids. Indeed, we can easily obtain the required polygonal 
cubic Bézier control nets by the degree elevation algorithm proposed by Várady et al. (2016) (see the right of Fig. B.28). Although 
the geometry of the surface has changed due to the degree elevation, its boundary information has been preserved. Thus we construct 
quadratic Bézier patches at internal regular vertices and cubic GB patches at internal irregular vertices, resulting in a globally 𝐺1

smooth surface.
22

4 Zheng et al. did consider the case of boundary vertices; however, for the sake of convenience, we will not consider it here.
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Fig. B.29. Polyhedral Bézier extraction. The input mesh is a simple-convex-polyhedral mesh comprising a 345-hexahedron and a tetrahedron. After applying Catmull–
Clark volumetric subdivision twice, a pure hexmesh  is generated, and the original 345-hexahedron and tetrahedron are transformed into internal irregular vertices 
(depicted as red points). Subsequently, a refined mesh ′ is generated through a single midpoint subdivision. Each internal irregular or semi-regular vertex (shown 
in blue) of  and its 1-ring neighboring vertices in ′ constitute a quadratic polyhedral or prismatic Bézier control net (represented by green wireframes). By 
performing degree elevation, the desired cubic grids (represented by yellow wireframes) can be created.

This algorithm can be easily extended to higher dimensions. Given an initial hexmesh or simple-convex-polyhedral mesh, applying 
Catmull–Clark volumetric subdivision (MacCracken and Joy, 1996) once or more times will produce a pure hexmesh  with 
internal vertices {v𝑖}. Although the original work (MacCracken and Joy, 1996) only carried out Catmull–Clark volumetric subdivision 
on hexmeshes, we find that it could be suitable for simple-convex-polyhedral meshes. Bajaj et al. (2002) also pointed out that 
the subdivision scheme for hexmeshes could be applied for such polyhedral meshes. They suggested constructing simple-convex-
polyhedral meshes using 3D Voronoi tessellation because, in general, the cells of a 3D Voronoi diagram are simple convex polyhedra. 
Similarly, by performing midpoint subdivision once on , we can obtain a refined mesh ′ then each internal vertex v𝑖 and its 
1-ring neighboring vertices in ′ form a quadratic Bézier control net. There exists a polyhedral quadratic grid for each internal 
irregular vertex and a prismatic quadratic grid for each internal semi-regular vertex.5 By degree elevation these polyhedral or 
prismatic quadratic Bézier control net will be cubic. Hence we can generate a globally 𝐺1 smooth volume consisting of quadratic 
tensor-product Bézier, cubic tensor-product GB, and cubic GB volumes. Fig. B.29 shows the process of polyhedral Bézier extraction.
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