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This study proposes a new n-sided (n ≥ 4) control point-based surface patch, the blending 
Bézier patch (BB patch), by constructing corner Bézier surfaces and using Gregory corner 
blending. A BB patch is defined on a regular polygonal domain with an n-sided control 
net generalized from quadrilateral Bézier grids, and it reduces to the same degree as a 
Bézier patch when n = 4. There are two main steps for constructing a BB patch: defining 
a corner Bézier patch for each corner and blending all corner Bézier patches using rational 
blending functions. Because the boundary behaviors of the BB patch are similar to those of 
the Bézier patch, a BB patch can be easily joined to the surrounding Bézier and other BB 
patches. As an application, we used BB patches to fill the holes with G2 continuity.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Tensor-product Bézier patches are typically used for free-form surface modeling in the field of computer aided geometric 
design (CAGD). In general, a complex object cannot be represented by just a single patch; therefore, a set of smoothly 
connected patches is required. Patchwork (multi-patch surface) is usually assembled using regular (quadrilateral) patches. 
However, multi-sided Bézier patches are often required to fill n-sided holes (Goldman, 2004) when irregular (non-four-sided) 
regions occur. Thus, constructing multi-sided free-form surfaces is an important topic in the field of CAGD.

Multifarious methods exist for generating multi-sided surfaces that have different features and satisfy various require-
ments (see a detailed review of Peters (2019)). We specifically focus on “genuine” n-sided patches that usually directly map 
planar n-sided domains to n-sided surfaces in space. This includes techniques such as multi-sided transfinite interpolation 
and multi-sided control point-based surfaces.

In 2016, Várady et al. combined the transfinite construction (side interpolant (Salvi et al., 2014)) and control point-based 
scheme to create their multi-sided Bézier patch — the generalized Bézier (GB) patch (Várady et al., 2016). The GB patch has 
good properties and there has been a series of excellent researches based on GB patch, such as (Várady et al., 2017; Salvi 
and Várady, 2018).

In this study, we combine the Gregory corner blending (Charrot and Gregory, 1984; Gregory and Hahn, 1989) and the 
tensor-product Bézier scheme to define a new n-sided (n ≥ 4) control point-based surface, that is, the Blending Bézier patch 
(BB patch). The BB patch has a simple and intuitive control structure. The patch evaluation does not include any weight 
deficiency or an additional correction term. The BB patch possesses tensor-product Bézier patch boundaries; thus, it can be 
smoothly connected to the adjacent ordinary quadrilateral Bézier or other BB patches. In addition, the BB scheme produced 
an ordinary quadrilateral Bézier patch when n = 4.
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Fig. 1. Four-sided and five-sided grids: (a) 4-sided, degree 3; (b) 5-sided, degree 3; (c) 4-sided, degree 4; (d) 5-sided, degree 4.

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of related works. Details 
of constructing the BB patch, including the control nets, local parameters, blending functions, and the boundary behavior of 
the BB patch are presented in Section 3. In Section 4, we present some examples to illustrate the features of BB patches. 
We discuss the limitations of BB patches and further work in Section 5 before concluding the paper in Section 6.

2. Related works

A rich body of literature involves the construction of multi-sided patches. In this section, we provide a brief overview of 
related works.

Subdivision schemes are effective methods for constructing surfaces from arbitrary topology meshes via infinite recursive 
refinement. The traditional Catmull–Clark subdivision generates C2 limit surfaces in regular regions, but only holds C1 con-
tinuity over extraordinary vertices (Catmull and Clark, 1978). Karčiauskas and Peters (2007) proposed a guided subdivision 
scheme that can generate global curvature continuous subdivision surfaces. However, achieving accurate interpolation of 
boundaries, including cross-derivatives, using the limit surface poses a challenging problem.

Another way of constructing smooth multi-sided surfaces involves using macro-patches. An n-sided macro-patch consists 
of n smoothly connected quadrilateral patches; all of these patches share one corner vertex, and every two adjacent patches 
share one boundary curve. Gregory and Zhou (1994) first constructed a C1 macro-patch of degree bi-3, followed by Peters’ 
(1999) C1 multi-sided surfaces of degrees bi-2 and bi-3. Loop and Schaefer (2008) generated G2 continuous macro-patches 
of degree bi-7. Recently, Karčiauskas and Peters (2016, 2020) and Peters constructed their bi-6 G2 macro-patches.

The multi-sided transfinite construction generates surfaces by interpolating the given boundary data, while the interior 
is automatically assembled. Research on multi-sided transfinite surfaces started with Charrot and Gregory (1984), who 
generated their C1 pentagonal patches using corner interpolants, followed by a C2 polygonal patch (Gregory and Hahn, 
1989). Then, Kato (1991) defined the n-sided patches with holes via side interpolants; and Várady (1991) defined the 
overlapping patches. In 2011, Várady et al. (2011) studied transfinite surfaces over irregular n-sided domains. Later, Salvi et 
al. proposed ribbon-based transfinite surfaces (Salvi et al., 2014) and extended the G2 Gregory patches (Salvi and Várady, 
2014).

Multi-sided control point-based schemes produce n-sided surfaces with multiple local controls. Sabin (1983) first con-
structed three- and five-sided patches with quadratic boundaries. Hosaka and Kimura (1984) defined similar cubic patches 
with three, five and six sides. Zheng and Ball (1997) extended these quadratic and cubic patches to arbitrary degrees on 
three, five, and six sides. Loop and DeRose (1989) extended the tensor-product Bézier and triangular Bézier patches to con-
struct an S-patch using multivariate Bernstein polynomials. Warren (1992) constructed four-, five-, and six-sided rational 
Bézier surfaces from rational triangular Bézier patches with base points. All these methods are bound by the number of 
sides, except for the S-patch.

Várady et al. proposed a multi-sided control-point-based scheme, the generalized Bézier (GB) patch (Várady et al., 2016), 
which is defined as a linear combination of a series of half-Bézier ribbons. Each half-Bézier ribbon consists of half-Bézier 
control points multiplied by the corresponding weighted Bernstein functions. The GB patches are compatible with adjacent 
ordinary quadrilateral Bézier patches (G1 or G2). However, weight deficiency must to be considered to ensure that the sum 
of all the blending functions is equal to one.

3. Blending Bézier patch

An n-sided (n ≥ 4), degree d BB patch is defined over a regular n-sided polygonal domain � with vertices {V i}n−1
i=0 .1 Each 

side of the polygon �i = {(1 − λ)V i + λV i+1 | 0 ≤ λ ≤ 1} is mapped to a degree d Bézier curve. The control nets of BB 
patches are generalized from the control nets of Bézier surfaces, same as the improved GB patches (Várady et al., 2017), 
called rectangular spider webs in Goldman (2004). The control net of a degree d, n-sided BB patch has nl(l + 1) + 1 control 
points for even degrees (d = 2l) and has n(l + 1)2 control points for odd degrees (d = 2l + 1) (see Fig. 1). We stress that 

1 We use circular index.
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Fig. 2. Constructing corner control nets: (a)-(c) The division around the ith corner point of a 5-sided, degree 3 grid; (d) the i-th corner control net of a 
5-sided, degree 3 grid; (e)-(g) the division around the ith corner point of a 5-sided, degree 4 grid; (h) the i-th corner control net of a 5-sided, degree 4
grid.

Fig. 3. Constrained parameterization. (a) Construction of the constrained parameterization; (b) Isolines of si−1 (in red), si (in green) and si+1 (in blue). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the input multi-sided Bézier control net assumes twist compatibility, indicating that the scheme only allows the use of 
twist-compatible data.

In the following, we first introduce the corner Bézier patch in Section 3.1, which includes three subsections for corner 
control net (Section 3.1.1), local parameters (Section 3.1.2), and the equation of the corner Bézier patch (Section 3.1.3). 
The blending functions are presented in Section 3.2. Subsequently, we formulate the surface equation of the BB patch in 
Section 3.3. Furthermore, the boundary behavior of the BB patch is investigated in the Section 3.4.

3.1. Corner Bézier patch

For each corner point Pi (i = 0, ..., n − 1) of an n-sided degree d (d = 2l or 2l + 1) grid, we define a degree d corner 
Bézier patch as the corner interpolant.

3.1.1. Corner control net
To construct the control net of degree d corner Bézier patch, we selected (d + 1)2 control points from the n-sided, degree 

d control net for each corner point Pi . It is well known that a four-sided degree d Bézier control net has (d + 1)2 control 
points that belong to d + 1 rows or d + 1 columns. Thus we divided the control points of an n-sided degree d control net 
into d + 1 rows and d + 1 columns around the ith corner point Pi . Fig. 2 shows the division: control points that belong to 
the same row are marked by the same colored upward-facing triangle (Figs. 2 (a) and (e)), and control points that belong 
to the same column are marked by the same colored right-facing triangle (Figs. 2 (b) and (f)). Control points that belong to 
the same row and same column are marked by the same colored upward-facing and right-facing triangles (Figs. 2 (c) and 
(g)). Then, for each point of the grid, we define an index ( j, k)i called the ith corner index: j implies that it belongs to the 
( j + 1)th row, k indicates that it belongs to the (k + 1)th column, and i indicates that the division is around the ith corner 
point Pi (see Figs. 2 (a)–(c), (e)–(g)).

We used the set P i
j,k to represent all the points whose ith corner indexes are ( j, k)i , and |P i

j,k| is the number of elements 
of the set P i . Then, the ith corner control net, denoted by {bi } where j, k = 0, ..., d, is defined as follows:
j,k j,k

3
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Fig. 4. Corner blending functions. (a) αi with p = 2; (b) αi with p = 3.

Fig. 5. A 5-sided BB patch evaluation: (a) Regular pentagonal domain and local parameters; (b) corner Bézier patches and the final BB patch.

bi
j,k =

∑
p∈P i

j,k
p

|P i
j,k|

. (1)

This implies that the control points, marked by the same colored upward-facing and right-facing triangles in Figs. 2 (c) and 
(g), were averaged into one point, as shown in Figs. 2 (d) and (h).

Clearly, the ith corner control net preserves the positions of several points, including the first l + 1 rows and columns 
around the ith corner. Thus we have,

bi
j,k = bi+1

d−k, j, 0 ≤ j ≤ l,0 ≤ k ≤ d. (2)

3.1.2. Local parameters — Salvi and Várady’s parameterization
For each corner vertex of the regular polygonal domain (also each corner control net), we required two local parameters 

ui and vi . Here, we used the constrained sweep parameterization proposed by Salvi and Várady (2014), which can ensure 
G2 interpolation, to determine the local parameters.

The constrained sweep parameterization was constructed using the Hermite polynomials. Let (x, y) be an arbitrary point 
in the polygonal domain, and let V = (1 − si)V i + si V i+1 (si ∈ [0, 1]) be the associated point on the ith side and 

−−−−→
V i V i−1

and 
−−−−−−→
V i+1 V i+2 edge vectors, as shown in Fig. 3 (a). The constrained sweep parameter si is subject to an equation that is 

formulated as follows.

(x, y) = V + hi[H(si)
−−−−→
V i V i−1 + H(1 − si)

−−−−−−→
V i+1 V i+2], (3)

where H(si) = 2s3
i − 3s2

i + 1 is the third-degree Hermite polynomial and si and hi are unknown. As the parameter domain 
is a regular polygon, hi can be computed using the following formula:
4
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Fig. 6. (a) A square domain; (b) local parameters; (c) corner Bézier patch; (d) the 4-sided BB patch.

hi = di

||−−−−→
V i V i+1|| · sin 2π

n

, (4)

where di is the perpendicular distance from point (x, y) to side �i , and ||−−−−→
V i V i+1|| is length of the ith side. Thus, we can 

obtain the value of si by solving the Equation (3), and Fig. 3 (b) shows the constant lines of the parameterization. The 
parameter si increases linearly on side �i and is 0 on side �i−1 and 1 on side �i+1.

Then, the two local parameters ui and vi are defined as

ui = si, vi = 1 − si−1. (5)

According to this special construction of the parameterization, the local parameters satisfy the following constraints:

∂ui+1

∂ui

∣∣∣∣
�i

= 0,
∂vi+1

∂ui

∣∣∣∣
�i

= −1,
∂ui+1

∂vi

∣∣∣∣
�i

= 1,
∂vi+1

∂vi

∣∣∣∣
�i

= 0. (6)

3.1.3. Equation of corner Bézier patch
Using the corner control net and two local parameters ui and vi , the ith corner Bézier patch Si is defined as follows:

Si(ui, vi) =
d∑

j=0

d∑
k=0

Bd
k(ui)Bd

j (vi)bi
j,k, (7)

where

Bd
k(ui) =

(
d
k

)
· (1 − ui)

d−kuk
i , Bd

j (vi) =
(

d
j

)
· (1 − vi)

d− j v j
i ,

are the Bernstein basis functions.

3.2. Blending functions

We used the traditional Gregory corner blending functions (Charrot and Gregory, 1984; Gregory and Hahn, 1989) to 
combine these n corner Bézier patches. The corner blending functions take values between 0 and 1 on the adjacent sides, 
and vanish on the nonadjacent sides. The function αi (for i = 0, ..., n − 1) is defined as follows:

αi = λ
p
i∑n−1

q=0 λ
p
q

, (8)

where λi = ∏
j �=i−1,i d j , p = 2 for G1 interpolation and p = 3 for G2 interpolation. Fig. 4 shows the distribution of the 

corner blending function αi over the regular pentagonal domain.
Furthermore, on side �i , the blending functions satisfy the following two constraints:

(αi + αi+1)
∣∣
�i

= 1,

α j
∣∣
�i

= 0, j �= i, i + 1,
(9)

and
5
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Fig. 7. house5. Fill a 5-sided hole with G2 continuity in different methods. (a) The BB patch; (b) Gregory patch (Gregory and Hahn, 1989); (c) extended 
G2 Gregory patch (Salvi and Várady, 2014); (d) the GB patch (Várady et al., 2017). From top to bottom: shaded multi-sided patch with surrounding regular 
patches, reflection lines, mean curvature, close-up of reflection lines and close-up of mean curvature.

∂mα j

∂ wm

∣∣∣∣
�i

= 0, j �= i, i + 1,

(
∂mαi

∂ wm
+ ∂mαi+1

∂ wm
)

∣∣∣∣
�i

= 0,

(10)

where 1 ≤ m ≤ p − 1 and w denotes an arbitrary direction in the polygonal domain. The blending functions can ensure 
that only the corner Bézier patches Si and Si+1 influence on side �i .

3.3. Patch equation

The BB patch is defined based on the blending functions and corner Bézier surfaces, as follows:

Sd,n,p(x, y) =
n−1∑
i=0

αi Si(ui, vi) =
n−1∑
i=0

λ
p
i∑n−1

q=0 λ
p
q

d∑
j=0

d∑
k=0

Bd
k(ui)Bd

j(vi)bi
j,k. (11)

Fig. 5 shows the process of a five-sided BB patch evaluation. Based on 
∑d

j=0
∑d

k=0 Bd
k(ui)Bd

j (vi) = 1 and 
∑n−1

i=0 αi = 1, the 
sum of all weights {αi Bd

k(ui)Bd
j (vi)}n−1,d,d

i, j,k=0 is equal to one.
Note that, in the case of n = 4, the BB patch is reduced to an ordinary Bézier patch. This is because the two local 

parameters reproduce the normal rectangular domain, and the corner grids are reduced to the original four-sided grid. 
Thus, each corner patch is exactly the original Bézier patch (see Fig. 6).

3.4. Boundary behavior

In this section, we show that the BB patch possesses tensor-product Bézier patch boundaries. However, some studies have 
investigated the geometric continuity of Gregory-like patches (Hall and Mullineux, 1999a; Salvi and Várady, 2014). Here, we 
provide a straightforward explanation by computing the directional derivatives up to and including the second-order of the 
BB patch (with degree d ≥ 5 and p = 3) with respect to ui and vi on the side �i .2

2 With degree d ≥ 3 and p = 2 for G1 continuity.
6
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Fig. 8. smbeam6. Fill a 6-sided hole with G2 continuity in different methods. (a) The BB patch; (b) Gregory patch (Gregory and Hahn, 1989); (c) extended 
G2 Gregory patch (Salvi and Várady, 2014); (d) the GB patch (Várady et al., 2017). From top to bottom: shaded multi-sided patch with surrounding regular 
patches, reflection lines, mean curvature, close-up of reflection lines and close-up of mean curvature.

First, from Equation (2), we have

Si
∣∣
�i

=Si+1
∣∣
�i

,

∂ Si

∂vi

∣∣∣∣
�i

= ∂ Si+1

∂ui+1

∣∣∣∣
�i

,
∂ Si

∂ui

∣∣∣∣
�i

= −∂ Si+1

∂vi+1

∣∣∣∣
�i

,

∂2 Si

∂ui∂vi

∣∣∣∣
�i

= − ∂2 Si+1

∂vi+1∂ui+1

∣∣∣∣
�i

,
∂2 Si

∂v2
i

∣∣∣∣
�i

= ∂2 Si+1

∂u2
i+1

∣∣∣∣
�i

,
∂2 Si

∂u2
i

∣∣∣∣
�i

= ∂2 Si+1

∂v2
i+1

∣∣∣∣
�i

.

(12)

Then, using Equations (5) and (6) and applying the chain rule, the derivatives of Si+1 with respect to ui and vi can be 
derived as

∂ Si+1

∂vi

∣∣∣∣
�i

= ∂ Si

∂vi

∣∣∣∣
�i

,
∂ Si+1

∂ui

∣∣∣∣
�i

= ∂ Si

∂ui

∣∣∣∣
�i

,

∂2 Si+1

∂ui∂vi

∣∣∣∣
�i

= ∂2 Si

∂ui∂vi

∣∣∣∣
�i

− (
∂2 vi+1

∂ui∂vi
· ∂ Si

∂ui
)

∣∣∣∣
�i

,

∂2 Si+1

∂u2
i

∣∣∣∣
�i

= ∂2 Si

∂u2
i

∣∣∣∣
�i

,
∂2 Si+1

∂v2
i

∣∣∣∣
�i

= ∂2 Si

∂v2
i

∣∣∣∣
�i

+ (
∂2ui+1

∂v2
i

· ∂ Si

∂vi
)

∣∣∣∣
�i

.

(13)

Recalling Equations (9) and (12), we obtain

Sd,n,3
∣∣
�i

= Si
∣∣
�i

. (14)

This means that on side �i , the BB patch Sd,n,3 has the same boundary curve, a degree d Bézier curve, as the corner Bézier 
patch Si .

Using Equations (9), (10) and (13), the first-order derivatives of Sd,n,3 with respect to ui and vi can now be obtained as 
follows:

∂ Sd,n,3

∂vi

∣∣∣∣
�i

= ∂ Si

∂vi

∣∣∣∣
�i

,
∂ Sd,n,3

∂ui

∣∣∣∣
�i

= ∂ Si

∂ui

∣∣∣∣
�i

. (15)

Evidently, the BB patch Sd,n,3 interpolates the cross-derivative of the corner Bézier patch Si on side �i .
7



We now derive the second-order derivatives of the BB patch with respect to ui and vi on side �i , using Equations (9), 
(10) and (13).

∂2 Sd,n,3

∂u2
i

∣∣∣∣
�i

= ∂2 Si

∂u2
i

∣∣∣∣
�i

,

∂2 Sd,n,3

∂ui∂vi

∣∣∣∣
�i

= ∂2 Si

∂ui∂vi

∣∣∣∣
�i

− (αi+1
∂2 vi+1

∂ui∂vi
· ∂ Si

∂ui
)

∣∣∣∣
�i

,

∂2 Sd,n,3

∂v2
i

∣∣∣∣
�i

= ∂2 Si

∂v2
i

∣∣∣∣
�i

+ (αi+1
∂2ui+1

∂v2
i

· ∂ Si

∂vi
)

∣∣∣∣
�i

.

(16)

According to the surface theory in differential geometry (Farin, 1993), using Equations (15) and (16), we can obtain 
the six coefficients of the first and second fundamental forms for each Sd,n,3 and Si in the ui, vi -plane, denoted by 
E, F , G, L, M, N , and Ei, Fi, Gi, Li, Mi, Ni .

Then, coefficients of the first fundamental forms are obtained.

E
∣∣

vi=0 =(
∂ Sd,n,3

∂ui
· ∂ Sd,n,3

∂ui
)

∣∣∣∣
�i

= (
∂ Si

∂ui
· ∂ Si

∂ui
)

∣∣∣∣
�i

= Ei
∣∣

vi=0,

F
∣∣

vi=0 =(
∂ Sd,n,3

∂ui
· ∂ Sd,n,3

∂vi
)

∣∣∣∣
�i

= (
∂ Si

∂ui
· ∂ Si

∂vi
)

∣∣∣∣
�i

= Fi
∣∣

vi=0,

G
∣∣

vi=0 =(
∂ Sd,n,3

∂vi
· ∂ Sd,n,3

∂vi
)

∣∣∣∣
�i

= (
∂ Si

∂vi
· ∂ Si

∂vi
)

∣∣∣∣
�i

= Gi
∣∣

vi=0.

(17)

Let n be the unit normal vector along the boundary curve that is perpendicular to the tangent plane spanned by ∂ Sd,n,3

∂ui

∣∣
�i

and ∂ Sd,n,3

∂vi

∣∣
�i

, which can be expressed as

n =
∂ Sd,n,3

∂ui

∣∣
�i

× ∂ Sd,n,3

∂vi

∣∣
�i∣∣∣∣ ∂ Sd,n,3

∂ui

∣∣
�i

× ∂ Sd,n,3

∂vi

∣∣
�i

∣∣∣∣ =
∂ Si
∂ui

∣∣
�i

× ∂ Si
∂vi

∣∣
�i∣∣∣∣ ∂ Si

∂ui

∣∣
�i

× ∂ Si
∂vi

∣∣
�i

∣∣∣∣ .
Then, we can obtain values of the coefficients of the second fundamental forms using Equation (16). By dot-multiplying 
both sides of Equation (16) with n, the second terms on the right-hand sides of the second and third equations in (16) are 
eliminated.

L
∣∣

vi=0 = ∂2 Sd,n,3

∂u2
i

∣∣∣∣
�i

· n =∂2 Si

∂u2
i

∣∣∣∣
�i

· n = Li
∣∣

vi=0,

M
∣∣

vi=0 = ∂2 Sd,n,3

∂ui∂vi

∣∣∣∣
�i

· n = ∂2 Si

∂ui∂vi

∣∣∣∣
�i

· n = Mi
∣∣

vi=0,

N
∣∣

vi=0 = ∂2 Sd,n,3

∂v2
i

∣∣∣∣
�i

· n =∂2 Si

∂v2
i

∣∣∣∣
�i

· n = Ni
∣∣

vi=0.

(18)

It is clear that on side �i , the BB patch Sd,n,3 and the corner Bézier patch Si have the same first and second fundamental 
forms in the ui, vi -plane. Thus, it can be inferred that Sd,n,3 has the same curvature as that of Si along the boundary.

In conclusion, the BB patch behaves like an ordinary Bézier patch on each boundary. Thus, BB patches can be easily 
included in surface patchwork involving the use of Bézier surfaces.

4. Examples

In this section, we present some test examples, including the challenging configurations — the quad-net obstacle course 
(Peters, 2017) — to show the features of the BB patches. We also make comparisons with Gregory patch (Gregory and Hahn, 
1989), extended G2 Gregory patch (Salvi and Várady, 2014), and the GB patch (Várady et al., 2017).

4.1. Obstacle course of Peters

Fig. 7 shows the challenging model house5, which has a five-sided patch surrounded by ordinary Bézier patches. Dif-
ferent resulting multi-sided patches generated by the different methods mentioned above are demonstrated. The mean 
curvature and reflection line renderings are also provided to demonstrate the different visual characteristics of these meth-
ods. Similarly, Figs. 8, 9, and 10 show the smbeam6 (6-sided), monk7 (7-sided), and kpa8 (8-sided) models, respectively. 
K. Qin, Y. Li and C. Deng Computer Aided Geometric Design 105 (2023) 102222
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Fig. 9. monk7. Fill a 7-sided hole with G2 continuity in different methods. (a) The BB patch; (b) Gregory patch (Gregory and Hahn, 1989); (c) extended 
G2 Gregory patch (Salvi and Várady, 2014); (d) the GB patch (Várady et al., 2017). From top to bottom: shaded multi-sided patch with surrounding regular 
patches, reflection lines, mean curvature, close-up of reflection lines and close-up of mean curvature.

Fig. 10. kpa8. Fill an 8-sided hole with G2 continuity in different methods. (a) The BB patch; (b) Gregory patch (Gregory and Hahn, 1989); (c) extended 
G2 Gregory patch (Salvi and Várady, 2014); (d) the GB patch (Várady et al., 2017). From top to bottom: shaded multi-sided patch with surrounding regular 
patches, reflection lines, mean curvature, close-up of reflection lines and close-up of mean curvature.
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Fig. 11. “Six-way pipe” model with G2 continuity. (a) the model with holes; (b) the hole-filled model with control points; (c) reflection lines.

Fig. 12. “X-8” model with G2 continuity. (a) three “U”-tubes; (b) solved model with control points; (c) reflection lines.

From the mean curvature and reflection line renderings, we can find that the BB patches have a better curvature distribu-
tion in the interior and its reflection lines have less fluctuations than Gregory and G2 Gregory patches, which use traditional 
Boolean-sum Taylor interpolants. However, it appears that the GB patches behave best in the interior because its reflection 
lines pass through the inside in a fairly smooth manner (without any fluctuation).

4.2. Multi-sided surface modeling with BB patches

Here, we present some multi-sided surface modeling examples solved using BB patches.
A “six-way pipe” surface model with eight six-sided holes is shown in Fig. 11 (a), where each hole is surrounded by six 

quadrilateral Bézier patches. We used six-sided BB patches to fill these holes with G2 continuity (see Figs. 9 (b)-(c)).
Another example is the “X-8” model, whose three “U”-tubes are separated, as shown in Fig. 12 (a). We used eight six-

sided BB patches to create natural transitions between the three “U”-tubes. Each six-sided BB patch is surrounded by three 
quadrilateral Bézier patches and three six-sided BB patches (Fig. 12 (b)). Note that G2 smoothness was also guaranteed in 
this case (Fig. 12 (c)).

In Fig. 13, four complex free-form surface models generated from the input closed quadmeshes with arbitrary topology 
are shown. We constructed the Bézier control nets (including multi-sided Bézier nets) from the input quadmeshes. The 
reflection lines indicate that the union of all of these surface patches is G2 continuous.

5. Discussion

In this section, we discuss the limitations of the BB patch and future work.

1. As mentioned above, we assume that the twist compatibility of the multi-sided Bézier control net and the corresponding 
control points at each corner must be the same. However, if the input grid encounters twist incompatibility at the 
corner, then the inner control points at the corner are not identical. Hall and Mullineux (1999b) first used this type of 
multi-sided Bézier control net, which was derived from Chiyokura and Kimura’s method Chiyokura and Kimura (1983), 
to generalize the control point construction of Zheng and Ball (1997) to allow incompatible twist vectors. Recently, 
Hettinga and Kosinka (2018) used Chiyokura and Kimura’s method (Chiyokura and Kimura, 1983) to generate Gregory 
GB and S-patches that can address the twist incompatibility problem. For the BB scheme, we likewise may be able 
to define a special Bézier patch by using Chiyokura and Kimura’s method (Chiyokura and Kimura, 1983) instead of an 
ordinary Bézier patch at each corner; thus, the final BB patch would be able to handle twist incompatibility.

2. A BB patch is defined over a regular polygonal domain; however, mapping a 2D regular polygon to an irregular 3D 
region may result in unexpected shape artifacts. A previous research (Várady et al., 2011) has investigated this problem 
10



K. Qin, Y. Li and C. Deng Computer Aided Geometric Design 105 (2023) 102222
Fig. 13. Free-form surface models with G2 continuity. From top to bottom: input quadrilateral meshes, shaded surface models and reflection lines.

and recommended the use of irregular polygonal domains based on the boundary configuration to improve surface 
quality. Furthermore, Salvi and Várady (2018) created their multi-sided surfaces over non-convex polygonal domains 
when the boundary segments had 3D concave angles. However, owing to the corner blending scheme, it seems difficult 
to define BB patches over concave domains.

3. In this study, we did not include the case of a three-sided patch. This is because each defined corner grid is a four-sided 
grid, which reduces the n-sided grid. A three-sided grid does not have sufficient control points to be reduced to a four-
sided grid. In contrast, constrained sweep parameterization is unsuitable for the triangular domain because the solution 
of the Equation (3) is not unique in this case. To construct a fairly good three-sided BB patch, an appropriate rule for 
constructing the corner grids from a three-sided control net and a well-defined parameterization over the triangular 
domain must be determined.

4. In addition, owing to the simple control structure of the BB scheme, it would be easy to generate multi-sided patches 
with B-spline boundaries. We should mention there have been some multi-sided control point-based B-spline patches, 
which based on the GB scheme (Hettinga and Kosinka, 2020a,b; Vaitkus et al., 2021).

6. Conclusion

We introduced the BB patch, a new multi-sided Bézier patch with a simple and intuitive control structure based on 
Gregory corner interpolant. A BB patch can be easily connected to a quadrilateral Bézier patch or another BB patch with G2

continuity. When the number of sides was reduced to four, the BB patch became an ordinary quadrilateral Bézier patch.
In the near future, we plan to extend the BB patches from regular polygonal domains to general domains, construct 

appropriate three-sided patches, and extend the scheme to create multi-sided B-spline surface patches.
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Karčiauskas, Kestutis, Peters, Jörg, 2007. Concentric tessellation maps and curvature continuous guided surfaces. Comput. Aided Geom. Des. 24 (2), 99–111.
Gregory, John A., Zhou, Jianwei, 1994. Filling polygonal holes with bicubic patches. Comput. Aided Geom. Des. 11 (4), 391–410.
Peters, Jörg, 1999. Constructing C1 surfaces of arbitrary topology using biquadratic and bicubic splines.
Loop, Charles, Schaefer, Scott, 2008. G2 tensor product splines over extraordinary vertices. Comput. Graph. Forum 27 (5), 1373–1382.
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